OF THE AMERICAN CHEMICAL SOCIETY

Registered in U. S. Patent Office. (C) Copyright, 1966, by the American Chemical Society

Physical and Inorganic Chemistry

The Rydberg States of Molecules. VI. Potential Curves and Dissociation Behavior of (Rydberg and Other) Diatomic States ${ }^{1}$

Robert S. Mulliken
Contribution from the Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago, Illinois 60637. ReceivedJanuary 24, 1966

[Dedicated to Professor Masao Kotani on the occasion of his sixtieth birthday]

Abstract

The ways in which the electronic wave functions of diatomic states change in various ranges of R values from $R=0$ to ∞ ($R=$ internuclear distance) are first discussed in a general way (section 2 , on State Correlation Diagrams), and some needed terminology is introduced; at large R values, LCAS (linear combination of atomic substate, including Heitler-London and various other) types of wave functions are needed. In section 3, avoided crossings and other causes for irregularly shaped potential curves are reviewed, and homogeneous perturbations are also considered. Section 4 contains a critical discussion of MO correlation diagrams, emphasizing that the ordinary more or less $\mathrm{H}_{2}+$-like correlations usually represent only pseudo-correlations in the range from large R values out to dissociation, except in the case of those electrons which on dissociation correspond to atomic closed shells; the forms of MO's as linear combinations of modified AO's (modified united-atom AO's at small R and modified sepa-rate-atom AO's at large R) are also discussed. In section 5, the course of the transformation of wave functions of the Rydberg states of H_{2} and He_{2} from MO-configuration forms near R_{e} (where they are good approximations) to LCAS forms on dissociation is examined. For the MO's themselves, from R_{e} to ∞, there is only a pseudo-correlation. Aside from further complications in some cases, the Rydberg states fall into two classes, of which the $1 \sigma_{\mathrm{g}} 2 \mathrm{p} \pi_{\mathrm{u}}$ and $1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \pi_{\mathrm{g}}$ (either singlet or triplet) states of H_{2} (using MO descriptions which are appropriate near R_{e}) are typical. The $1 \sigma_{\mathrm{g}} 2 \mathrm{p} \pi_{\mathrm{u}}$ type dissociates smoothly along a normal potential curve into a Heitler-London-like ($\left.1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{\mathrm{u}}$ atompair LCAS, while the $1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \pi_{\mathrm{g}}$ type dissociates along a potential curve with a hump, in the neighborhood of which the wave function (as shown by J. C. Browne) can be approximated in terms of LCAS's only by a mixture of ($1 \mathrm{~s} n \mathrm{p} \pi)_{\mathrm{g}}$ and ($1 \mathrm{~s} 3 \mathrm{~d} \pi)_{\mathrm{g}}$ atom-pair LCAS's, but as $R \rightarrow \infty$ attains a pure ($\left.1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{g}$ LCAS. In both cases, the use of the atompair LCAS's mentioned affords rather good wave functions even at R_{e}, although, of course, corresponding ion-pair functions must be added (though this is less important than might appear at first sight because of their very marked lack of orthogonality to corresponding atom-pair LCAS's) if one is to obtain (good approximations to) the much better MO-configuration functions.

1. Introduction

Since publication of parts I-V of this work, ${ }^{2}$ some relevant new developments have occurred. ${ }^{3-5}$ The present part VI deals especially (see section 5)
(1) This work was assisted by the Office of Naval Research, Physics Branch, under Contract Nonr-2121 (01), and by the Office of Aerospace Research, U. S. Air Force, Electronic Systems Division, Air Force Systems Command under Contract AF19(628)-2474.
(2) R. S. Mulliken, J. Am. Chem. Soc., 86, 3183 (1964). A number of
with the dissociation behavior of diatomic Rydberg
references to particular sections of that paper are given in the present text; for example, ''V,2'' means part V, section 2 of that paper.
(3) R. S. Mulliken, Phys. Rev., 136, A962 (1964).
(4) J. C. Browne (a) J. Chem. Phys., 42, 2826 (1965): 2 s and $3 \mathrm{p} \sigma \mathrm{He}_{2}$ states; (b) Phys. Rev., 138, A9 (1965): 3d π states of H_{2} and He_{2}; (c) J. Chem. Phys., 41, 1583 (1964): 3d δ states of H_{2} and long-range parts of $2 \mathrm{p} \pi$ - and $3 \mathrm{~d} \pi$-state potential curves.
(5) (a) W. M. Wright and E. R. Davidson, ibid., 43, 840 (1965): $3 \mathrm{~d} \pi{ }^{3} \Pi_{\mathrm{g}}$ state of H_{2}; (b) C. B. Wakefield and E. R. Davidson, ibid., 43, 834 (1965): $2 \mathrm{~s}, 3 \mathrm{~s}$, and $3 \mathrm{~d} \sigma,{ }^{2} \Sigma_{\mathrm{g}}{ }^{+} \mathrm{H}_{2}$ states; also $2 \mathrm{~s}, 3 \mathrm{~s}, 3 \mathrm{~d} \sigma, \Sigma_{\mathrm{g}}{ }^{+}$, and $3 \mathrm{~d} \delta,{ }^{1, \mathrm{~s}} \Delta_{\mathrm{g}}$ states for a few R values.
states, but sections 2,3 , and 4 are devoted to a review and clarification of some related matters, including the introduction of descriptive terminology which the writer feels to be much needed as an aid to clear understanding.

2. State Correlation Diagrams

Correlation diagrams for diatomic MO's indicating how the forms and energies of MO's change with internuclear distance R from $R=0$ ("united-atom") through R_{e} to large R values (separate atoms) are familiar. ${ }^{6}$ These will be reviewed in section 4. The present section deals with the general characteristics of correlation diagrams for diatomic electronic states which have simple normal potential curves. These are states for which (a) the validity of the BO (BornOppenheimer) approximation can be assumed and (b) whose potential curves $U(R)$ either have a single fairly deep minimum (typical attractive states) or no minimum (repulsive states). States with potential curves of less regular shape are considered in section 3.

From $R=0$ to somewhat beyond R_{e} (the MO region of R values), it is convenient to formulate the accurate electronic wave function Ψ as a linear combination of terms $\Sigma c_{i} \Psi_{i}$ each of MO electron configuration type. Usually Ψ contains just one dominant term Ψ_{0} with coefficient near 1.0, of SCF-MO (self-consistent field MO) form, plus a large number of other terms Ψ_{i} with relatively small coefficients, representing CM (configuration mixing). This really means mixing of state wave functions of the same species but from different electron configurations; for example, $1 \sigma_{\mathrm{u}}{ }^{2},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$ mixes somewhat with $1 \sigma_{\mathrm{g}}{ }^{2},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$in H_{2}; as an analogous atomic example, $1 s^{2} 2 \mathrm{p}^{6},{ }^{1} \mathrm{~S}$ mixes somewhat with $1 s^{2} 2 s^{2} 2 p^{4}, 1 S$. The situation with one dominant term of MO type may be called the minor $M O-C M$ case. When spin-orbit coupling is important, CM of course includes some terms differing in multiplicity.

At large R values (the transition region of R values) a major MO-CM case (two or more CM terms having relatively large coefficients) is usually ${ }^{7}$ reached or approached if we continue to build Ψ from MOconfiguration terms. At still larger R values (the $A O$ region of R values, where AO means separate-atom AO), major $M O-C M$ usually ${ }^{7}$ is required if MOconfiguration terms are used.

However, major CM can be avoided at large R values if Ψ is shifted to a two-atom AO-configuration basis. Ψ then takes the form of an LCAPAS molecular wave function, meaning a function which is an antisymmetrized product $a \psi_{\mathrm{a}} \psi_{\mathrm{b}}$ (an AP) of atomic substate (AS) wave functions ψ_{a} and ψ_{b}, or usually a linear combination (LC) of such antisymmetrized products. ${ }^{8}$ In general, each atomic-state function Ψ may usually be expressed using one dominant SCF-AO term belonging to a single AO configuration, plus minor CM ; the dominant term itself, likewise each of the minor CM terms, may consist either of a single Slater determinant

[^0]or a linear combination of these, depending on the AO configuration and on M_{L} and M_{S}. Each atomic substate function ψ used must be of strong-field type, that is, with definite M_{L} and M_{S} values. In general, there are several substate ψ 's (each one in the form of a single Slater determinant) for the dominant term in each of the participating atomic-state functions Ψ_{a} and Ψ_{b}, but in general this degeneracy is partially split in the molecule and linear combinations only of suitably selected $\psi_{\mathrm{a}} \psi_{\mathrm{b}}$ products (each such product then made over-all antisymmetric in all the electrons) are taken; similarly for the minor CM terms.

Although less clearly self-explanatory than LCAPAS, the letters LCAS will be used hereafter for the sake of brevity. Every LCAS is associated with one single twoatom AO configuration, as for example $1 \mathrm{~s}_{\mathrm{B}}{ }^{2} 2 \mathrm{~s}_{\mathrm{B}}{ }^{2} 2 \mathrm{p}_{\mathrm{B}}{ }^{-}$ $1 \mathrm{~s}^{2} 2 \mathrm{~s}_{\mathrm{O}}{ }^{2} 2 \mathrm{p}_{\mathrm{O}}{ }^{4}$ for a molecule BO. Such a two-atom AO configuration can be thought of as similar to a singleatom AO configuration; for example, the BO twoatom just mentioned is comparable to a single-atom configuration $1 s^{2} 2 s^{2} 2 p 3 s^{2} 4 s^{2} 4 p^{4}$. In the normal case that only minor AO-CM is present in the atomic wave functions Ψ_{a} and Ψ_{b} used in constructing any LCAS molecular Ψ which is valid at large R values, one can say that there is only minor $A O-C M$ in this Ψ.

Simple examples of LCAS functions suitable in the AO region include the normal and various excitedstate functions of $\mathrm{H}_{2}{ }^{+}, \mathrm{H}_{2}, \mathrm{He}_{2}{ }^{+}, \mathrm{HeH}, \mathrm{Li}_{2}, \mathrm{BeH}$, and also $\mathrm{H}^{+} \mathrm{H}^{-}$and other ion-pair functions. HeitlerLondon (HL) and ion-pair functions are special cases of LCAS functions. Thus for the H_{2} configuration $1 \mathrm{~s}_{\mathrm{a}} 1 \mathrm{~s}_{\mathrm{b}}$, the $M_{\mathrm{S}}=+1$ substate of the ${ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$state is represented by the single APAS

$$
\text { Q } 1 \mathrm{~s}_{\mathrm{a}}(1) \alpha(1) 1 \mathrm{~s}_{\mathrm{b}}(2) \alpha(2)
$$

while for $M_{\mathrm{S}}=0$, LCAS's are needed

$$
\alpha 1 \mathrm{~s}_{\mathrm{a}}(1) \alpha(1) 1 \mathrm{~s}_{\mathrm{b}}(2) \beta(2) \pm Q 1 \mathrm{~s}_{\mathrm{b}}(1) \beta(1) 1 \mathrm{~s}_{\mathrm{b}}(2) \alpha(2)
$$

with the + and - signs belonging to the ${ }^{3} \Sigma_{u}+$ and ${ }^{1} \Sigma_{g}+$ states, respectively. When there is only one electron, as in $\mathrm{H}_{2}{ }^{+}$, the LCAO MO function at large R values can be regarded equally well as a simplified LCAS function. For the Rydberg states of H_{2} and He_{2} at large R, LCAS forms are required (see section 5).

Matters are somewhat more complicated in cases where the electron configuration of either or both atoms is "wide open," that is, differs from a set of closed shells by more than ± 1 electron. Such a twoatom electron configuration gives rise to more than one atomic-state pair; going asymptotically to each of these as $R \rightarrow \infty$, there are in general several molecular $U(R)$ curves corresponding to various LCAS's derived from the given pair of atomic states. For example, the lowest-energy $A O$ configuration $1 s^{2} 2 s^{2} 2 p^{2}$ of the C atom gives a ${ }^{3} \mathrm{P}$, a ${ }^{1} \mathrm{D}$, and a ${ }^{1} \mathrm{~S}$ state. Two normal atoms (both ${ }^{3} \mathrm{P}$) give a number of C_{2} molecule LCAS's each with its own $U(R)$ curve. Each of the other atomic-state pairs ${ }^{3} \mathrm{P}-{ }^{1} \mathrm{D},{ }^{3} \mathrm{P}-{ }^{-1} \mathrm{~S},{ }^{1} \mathrm{D}-{ }^{3} \mathrm{P},{ }^{1} \mathrm{D}-{ }^{1} \mathrm{D},{ }^{1} \mathrm{D}-{ }^{1} \mathrm{~S}$, ${ }^{1} \mathrm{~S}-{ }^{3} \mathrm{P},{ }^{1} \mathrm{~S}-{ }^{1} \mathrm{D}$, and ${ }^{1} \mathrm{~S}-{ }^{1} \mathrm{~S}$, belonging to the same twoatom AO configuration $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$, likewise gives rise to $U(R)$ curves.

Although at large R each molecular Ψ consists of a single LCAS, at smaller R forced intraconfigurational state-mixing (forced AO-SM) sets in between LCAS's of the same diatomic species (e.g., ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$or ${ }^{3} \Pi_{\mathbf{u}}$) associ-
ated with other energy asymptotes corresponding to other state pairs (e.g., ${ }^{3} \mathrm{P}-{ }^{1} \mathrm{D},{ }^{3} \mathrm{P}-{ }^{1} \mathrm{~S}$, etc., mentioned above) of the same two-atom AO configuration. Then as the transition region of R is approached at still smaller R, forced AO-CM from extraconfigurational mixing (from LCAS's derived from state pairs belonging to excited two-atom AO configurations, e.g., $1 \mathrm{~s}^{2}$ $2 \mathrm{~s}^{2} 2 \mathrm{p}^{2} 1 \mathrm{~s}^{2} 2 \mathrm{~s} 2 \mathrm{p}^{3}$ or $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$ in our C_{2} example) also sets in increasingly.

In the correlation of a group of electronic states from small to large R values, or vice versa, the course of the several potential curves depends very much on the energy patterns of MO-configuration and AO-configuration states. Thus for H_{2}, the $U(R)$ curves of the two dominant MO-configuration states $1 \sigma_{\mathrm{g}} \mid \sigma_{\mathrm{u}},{ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$ are near together at small R values but separate widely as R increases, with the ${ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$going to the low-energy ${ }^{3} \Sigma_{u}+$ HL state of AO configuration $1 \mathrm{~s}_{\mathrm{a}} 1 \mathrm{~s}_{\mathrm{b}}$ and the ${ }^{1} \Sigma_{u}{ }^{+}$, after approaching $1 s^{2}$ ion-pair form, finally going to a ${ }^{1} \Sigma_{u}+$ LCAS state of 1 s 2 p AO configuration. Correlating in the reverse direction, from large to small R, the low-energy AO configuration $1 \mathrm{~s}_{\mathrm{a}} 1 \mathrm{~s}_{\mathrm{b}}$ gives rise to the HL attractive state $1 \mathrm{~s} \cdot 1 \mathrm{~s},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$and the repulsive state $1 \mathrm{~s} \times 1 \mathrm{~s},{ }^{3} \Sigma_{\mathfrak{u}}{ }^{+}$which at small R values belong respectively to two different MO configurations $1 \sigma_{\mathrm{g}}{ }^{2}$ and $1 \sigma_{\mathrm{g}} 1 \sigma_{\mathrm{u}}$ of widely different energy. ${ }^{9}$ The subject of the effect of differing dissociation products on the molecular constants of different states of the same MO electron configuration is discussed further in another paper. ${ }^{10}$

3. Irregularly Shaped Diatomic Potential Curves

Although most $U(R)$ curves of low-energy diatomic electronic states are either smooth attraction curves with one minimum, or else smooth repulsion curves, curves of less regular form are increasingly being found. Possible causes of these irregularities are now reviewed.

Avoided Crossings and Homogeneous Perturbations. The most important cases of humps or deformation in attractive curves can be understood in terms of interaction at a crossing of two attractive potential curves associated with electronic states which are of the same group-theoretical species. It will be recalled that, in atoms, the energies of two zero-order states of the same species but of different dominant AO electron configuration usually are quite different but occasionally by accident are nearly equal, in which case major CM between them occurs if the matrix element of their interaction is large enough. In molecules, where the electronic energy varies with R, it can happen that the $U(R)$ curves of two zero-order states of the same species, but whose wave functions are orthogonal or nearly so, and each of which has only minor CM (MO-CM if small R, AO-CM if large R), can come near each other, or may cross, in some range of R. If they interact strongly, what may be called accidental major $C M$ then results over the range of R where the two curves are sufficiently near.

[^1]In terms of the size of the interaction matrix element involved, crossings can be weak or strong. If the interaction matrix element is small, it is best to think in terms of strong mutual perturbations (homogeneous perturbations) between sets of vibronic-rotational levels belonging to the two potential curves which approach or cross. (In the case that one of two $U(R)$ curves which cross is repulsive and the other attractive, the interaction causes either an avoided crossing or very strong homogeneous predissociation of the energy levels of the attractive curve.) These perturbations are strongest for energy levels with electronic energy near that of the point of crossing or closest approach. They represent strong departures from the validity of the BO approximation.

The NO molecule affords many examples of this type of interaction ${ }^{11}$ with one wave function that of a Rydberg state (MO electron configuration $\cdots 5 \sigma^{2} 1 \pi^{4} \mathrm{Ry}$, where Ry denotes a Rydberg MO) and the other that of a valence-shell state (of MO configuration, for example, $\cdots 5 \sigma^{2} 1 \pi^{3} 2 \pi^{2}$). Another interesting example is that of the $1 \sigma_{\mathrm{g}} 3 \mathrm{~s},{ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$and $1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \sigma,{ }^{3} \Sigma_{\mathrm{g}}{ }^{+} \mathrm{H}_{2}$ Rydbergstate curves, ${ }^{12}$ which cross almost exactly at R_{e} of both curves and of the positive ion. The interaction matrix element is only $75 \mathrm{~cm}^{-1}$ and the homogeneous perturbation viewpoint is appropriate. The smallness of the matrix element is no doubt a result of the nearly UAO forms of the 3 s and $3 \mathrm{~d} \sigma$ Rydberg MO's, together with nearly identical $1 \sigma_{\mathrm{g}}$ forms, in the two zero-order functions.

If the matrix element is large enough, the interaction between two minor MO-CM (or minor AO-CM) potential curves which would cross can best be thought of as resulting in two new resultant curves which do not cross (avoided crossing case). For this case it is necessary that the new curves be sufficiently far apart, compared with vibrational energy level spacings, so that the Born approximation holds reasonably well for them.

Similar considerations apply in the case of avoidance without crossing, which occurs if two minor CM curves come close and interact strongly yet do not cross.

One example of avoided crossing is that of two minor MO-CM ${ }^{2} \Sigma_{\mathrm{u}}{ }^{+}$curves of $\mathrm{N}_{2}{ }^{+}$with MO electron configurations $\cdots 2 \sigma_{\mathrm{u}} 1 \pi_{\mathrm{u}}{ }^{4} 3 \sigma_{\mathrm{g}}{ }^{2}$ and $\cdots 2 \sigma_{\mathrm{u}}{ }^{2} 1 \pi_{\mathrm{u}}{ }^{3} 3 \sigma_{\mathrm{g}} 1 \pi_{\mathrm{g}}$; here two resultant curves are found experimentally which are somewhat abnormal in shape but show no humps or extra minima. ${ }^{13}$ Here the avoided crossing occurs at a small R value and between two valence-shell MO states, a situation which favors strong interaction.

Another striking example is that of the lowest excited ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$state of H_{2}, with two minima and a hump between. ${ }^{14}$ This is explainable by an avoided crossing

[^2]between the minor MO-CM curve of the Rydberg state $1 \sigma_{\mathrm{g}} 2 \mathrm{~s},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$, rising fairly fast toward a dissociation asymptote corresponding to an LCAS wave function with one 2 -quantum excited atom, and that of the doubly excited minor MO-CM $1 \sigma_{\mathrm{u}}{ }^{2},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$state which because of its ion-pair character in AO approximation has a rather deep minimum at large R. At still larger R, where now the two states can best both be described as minor AO-CM states, a second avoided crossing of the same two curves must occur so as to permit the actual lowest-excited ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$state curve to dissociate into the LCAS state mentioned above, while the ion-pair state goes toward a higher-energy asymptote.
Typical examples of avoided crossings in the AO region are found in the alkali halide molecules MX where avoided crossings occur of covalent LCAS wave functions $\mathrm{M} \cdot \mathrm{X}$ and ion-pair functions $\mathrm{M}^{+} \mathrm{X}^{-} .{ }^{15}$

In the foregoing examples and probably in most other cases of avoided crossings, probably the two minor CM wave functions whose curves tend to cross are strongly mixed only in a moderate range of R values in the neighborhood of the value R_{c} at which the minor CM curves would cross. (At R_{c}, of course, there must be a 50:50 mixing.) The breadth of the R range in which there is strong mixing should be greatest if the interaction matrix element is large, and if the zeroorder potential curves intersect at a small angle.

At R values distant from an R_{c}, the wave functions in typical cases may be minor CM functions which are nearly as pure single-configuration functions as in cases where there is no avoided crossing. Granting this, if one follows the lower of the two curves resulting from an avoided crossing, from small R values through R_{c} to large R values, the character of the wave function must shift from being near that appropriate to one of the two nearly pure electron configurations to that for the other, while for the upper of the two curves the reverse change occurs.

In a state correlation diagram (cf. section 2), either of two points of view can then be adopted in cases where an avoided crossing occurs. One can follow each of the resultant $U(R)$ curves and say that the nature of the electron configuration (and/or state) changes radically in passing through R_{c}. Or one can correlate the segments of the two $U(R)$ curves below and above R_{c} as if crossing had occurred, so that segments of like configuration and state are correlated, although at the same time recognizing that near R_{c} there is a range of R where the actual states are strongly mixed. The second viewpoint makes sense especially in cases where the R range of strong mixing is reasonably well localized.

London Dispersion Force Effects. Small humps, minima, or other deviations from simple form in $U(R)$ curves can be produced by (a) second-order or (b) first-order London dispersion forces. The former (a) can produce shallow van der Waals minima in what otherwise would be pure repulsion curves. ${ }^{16}$ The latter ${ }^{17}$ (b) can produce shallow minima at large R

[^3]in repulsion curves, or small maxima at large R for stable attraction states. A good example is the hump in the lowest ${ }^{1} \Pi_{u}$ Rydberg state of $\mathrm{H}_{2} ;{ }^{18}$ further similar examples are known in a ${ }^{1} \Pi_{u}$ state of Na_{2} and in other cases. ${ }^{17}$

Another interesting example is that of the lowest Rydberg ${ }^{1} \Pi_{\mathrm{g}}$ state of H_{2} (of MO configuration $1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \pi$ at R_{e}), which has a stable minimum, then with increasing R a maximum due to avoided crossing of LCAS type (see section 5), and finally a first-order dispersion minimum ${ }^{4 \mathrm{c}}$ of depth 0.015 ev at large R.

Exchange Effects. In atoms, singlet- and tripletstate energies differ approximately by the presence of an exchange energy $+K$ for the singlet and $-K$ for the triplet, with the exchange integral K always a positive quantity. In LCAS states of HL type, singlets and triplets again differ by the presence of $+K$ or $-K$, but now K is negative in cases like that of two normal H atoms where as a result $1 \mathrm{~s} \cdot 1 \mathrm{~s},{ }^{1} \Sigma_{\mathrm{g}}+$ is attractive and $1 \mathrm{~s} \times 1 \mathrm{~s},{ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$is repulsive. ${ }^{9}$ (The negative value of K is connected with the nonzero value of the overlap integral between the 1 s AO's of the two atoms.) Similarly for the BH molecule at large R values, the normal state $H L$ function ($1 s^{2} 2 s^{2} 2 p \sigma_{B}$) $1 s_{H},{ }^{1} \Sigma^{+}$is attractive, while the ($1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p} \sigma_{\mathrm{B}}$) $\times 1 \mathrm{~s}_{\mathrm{H}},{ }^{3} \Sigma^{+}$must be repulsive. ${ }^{9}$ However, in the ${ }^{1} \Pi$ and ${ }^{3} \Pi$ excited states with LCAS configuration $\left(1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p} \pi\right)_{\mathrm{B}} 1 \mathrm{~s}_{\mathrm{H}}, K$ is positive as in atoms, since the overlap integral and bonding between $2 \mathrm{p} \pi_{\mathrm{B}}$ and $1 \mathrm{~s}_{\mathrm{H}}$ are nil. This exchange term contributes, along with another, toward making the ${ }^{1} \Pi$ state repulsive at large R, but finally at smaller R an avoided crossing creates a minimum, leaving, however, a hump of 0.12 -ev height between R_{e} and $R=\infty$. The other exchange effect is a nonbonded repulsion (as in HeH) between the $1 \mathrm{~s}_{\mathrm{H}}$ electron and the $2 \mathrm{~s}^{2}$ closed shell on boron. Very likely the latter effect makes the larger contribution to the repulsion at moderately large R, but the presence of the other exchange effect is interesting at least in principle. ${ }^{19}$

4. Correlation Diagrams for Diatomic MO's

The familiar correlation diagrams for diatomic MO's ${ }^{6}$ are supposed to indicate, for each MO in the MO electron configuration of any particular electronic state, something about how the MO changes from $R=0$ through R_{e} to $R=\infty$. For homopolar molecules the correlation diagram for $\mathrm{H}_{2}{ }^{+}$serves as prototype. Here for each MO its term value or binding energy T is shown as a function of R, and names or symbols indicating the asymptotic forms of the MO at $R=0$ (UAO limit) and at $R=\infty$ (AO limit) are given. Near $R=\infty$ the MO is of LCAO form $\chi_{\mathrm{a}} \pm \chi_{\mathrm{b}}$, with an AO χ which in general is a hybrid of AO's differing in l; as $R \rightarrow \infty, T$ of the MO approaches equality to T of this AO. At intermediate R values the MO can be given a name based on its form near $R=0$ or near $R=\infty$, or on some other basis. For $\mathrm{H}_{2}{ }^{+}$, the UAO name is most often used. The function $T(R)$
(17) Cf. R. S. Mulliken, Phys. Rev., 120, 1674 (1960); J. C. Browne, ref 4 c on II states.
(18) Accurate calculations by Kolos and Wolniewicz ${ }^{16}$ gave a hump of height $105 \mathrm{~cm}^{-1}$ at $R=4.75 \mathrm{~A}$. Cf, also ref 17 and J. C. Browne, J. Chem. Phys., 40, 43 (1964).
(19) For a discussion of the nature of the ${ }^{1 I I}$ state of BH and the height of its hump, see A. C. Hurley, Proc. Roy. Soc. (London), A261, 237 (1961). Hurley, however, did not consider the $+K$ contribution to the repulsion at large R.
for each MO is unique and is quantitatively known or calculable. Each $T(R)$ is equal to the vertical ionization energy $I(R)$, that is, $U^{+}(R)-U(R)$, where $U^{+}(R)$ and $U(R)$ are the potential curves of $\mathrm{H}_{2}{ }^{2+}$ (here of course U^{+}is merely e^{2} / R) and $\mathrm{H}_{2}{ }^{+}$. Another point is that for each MO and $T(R)$ of $\mathrm{H}_{2}{ }^{+}$there is only one electronic state.
In other molecules, even for ionization of an electron out of one particular MO, there is no unique $I(R)$ with which a $T(R)$ for that MO can be identified, since occupancy of this MO occurs for many different states of the molecule and its positive ion, each with its own potential curve. In practice, to be sure, one is likely to be most interested in removing the electron from a molecule in some particular state, for example, the normal state, so that the difficulty in deciding on a single or perhaps an average $I(R)$ to be identified with $T(R)$ is reduced.

But further and most especially, the identification of $I(R)$ or $T(R)$ with a particular MO has meaning only to the extent that the wave functions of the relevant molecule state or states and ion state or states can be approximated by Ψ 's with minor MO-CM only. Usually this condition is satisfactorily fulfilled near R_{e} but fails at large R values because of increasing MO-CM For this reason the meaning of the usual correlation curves as $R \rightarrow \infty$ is in general open to very serious question. At best they have in general only qualitative meaning at large R values.

Before exploring this major difficulty, it is useful to summarize some of the other differences between the $T(R)$ curves of $\mathrm{H}_{2}{ }^{+}$, discussed ${ }^{2}$ in section $\mathrm{V}, 2$, and those of other molecules.
(1) At $R=0$ the hydrogenic l degeneracy which occurs in He^{+}is removed, resulting in some changes in the energy order shown in Table 1 of ref 2 for $\mathrm{H}_{2}{ }^{+}$, but not in the splitting patterns (eq 17 of ref 2) for MO's of given n and l which differ in λ.
(2) At $R=\infty$ removal of the hydrogenic l degeneracy causes hybrid LCAO forms to be replaced by pure l LCAO forms, in a familiar way ($c f$. Table I). At smaller R, hybridization is partially restored.
(3) The noncrossing rule (cf. section 3) tends to introduce some shortcuts which do not occur in $\mathrm{H}_{2}{ }^{+}$ because of separability there in elliptical coordinates. Consider for example the MO's which at small R have the LCUAO forms $\sigma_{\mathrm{g}} 3 \mathrm{~s}$ and $\sigma_{\mathrm{g}} 3 \mathrm{~d}$, essentially the same as the UAO forms 3 s and $3 \mathrm{~d} \sigma$ ($c f$. Table II). Of these, 3 s is lower in energy at small R, but correlates, as R increases to large values, with the $\sigma_{\mathrm{g}} 3 \mathrm{~s}$ LCAO form, which is higher in energy than the $\sigma_{\mathrm{g}} 2 \mathrm{p}$ form with which $3 \mathrm{~d} \sigma$ of small R correlates. Thus the correlation curves would cross at intermediate R values. For H_{2} the two MO's are both Rydberg MO's, and the crossing takes place at R values where both are still so near to being UAO's that their interaction at the crossing point is weak enough that it makes good sense to ignore the noncrossing rule. ${ }^{20}$ The same two MO's, of course, occur in all homopolar diatomic molecules. In N_{2} at R_{e} of its normal state, one of them is a Rydberg MO

[^4]Table I. Approximate Forms of Homopolar Diatomic MO's at Small and Large R Values ${ }^{a}$

Small R $($ LCUAO form)	Large R (LCAO form)	Small R (LCUAO form)	Large R (LCAO form)
$\delta_{\mathrm{g}} 3 \mathrm{~d}(10)$	$\delta_{\mathrm{g}} 3 \mathrm{~d}(17)$	$\phi_{\mathrm{u}} 4 \mathrm{f}(20)$	$\phi_{\mathrm{u}} 4 \mathrm{f}(36)$
$\pi_{\mathrm{g}} 3 \mathrm{~d}(9)$	$\pi_{\mathrm{g}} 2 \mathrm{p}(7)$	$\delta_{\mathrm{u}} 4 \mathrm{f}(19)$	$\delta_{\mathrm{u}} 3 \mathrm{~d}(18)$
$\sigma_{\mathrm{g}} 3 \mathrm{~d}(8)$	$\sigma_{\mathrm{g}} 2 \mathrm{p}(5)$	$\pi_{\mathrm{u}} 4 \mathrm{f}(18)$	$\pi_{\mathrm{u}} 3 \mathrm{~d}(16)$
$\pi_{\mathrm{u}} 3 \mathrm{p}(7)$	$\pi_{\mathrm{u}} 3 \mathrm{p}(12)$	$\sigma_{\mathrm{u}} 4 \mathrm{f}(17)$	$\sigma_{\mathrm{u}} 2 \mathrm{p}(8)$
$\sigma_{\mathrm{u}} 3 \mathrm{p}(6)$	$\sigma_{\mathrm{u}} 2 \mathrm{~s}(4)$	$\delta_{\mathrm{g}} 4 \mathrm{~d}(16)$	$\delta_{\mathrm{g}} 4 \mathrm{~d}(29)$
$\sigma_{\mathrm{g}} 3 \mathrm{~s}(5)$	$\sigma_{\mathrm{g}} 3 \mathrm{~s}(9)$	$\pi_{\mathrm{g}} 4 \mathrm{~d}(15)$	$\pi_{\mathrm{g}} 3 \mathrm{p}(13)$
$\pi_{\mathrm{u}} 2 \mathrm{p}(4)$	$\pi_{\mathrm{u}} 2 \mathrm{p}(6)$	$\sigma_{\mathrm{g}} 4 \mathrm{~d}(14)$	$\sigma_{\mathrm{g}} 3 \mathrm{p}(11)$
$\sigma_{\mathrm{u}} 2 \mathrm{p}(3)$	$\sigma_{\mathrm{u}} 1 \mathrm{~s}(2)$	$\pi_{\mathrm{u}} 4 \mathrm{p}(13)$	$\pi_{\mathrm{u}} 4 \mathrm{p}(24)$
$\sigma_{\mathrm{g}} 2 \mathrm{~s}(2)$	$\sigma_{\mathrm{g}} 2 \mathrm{~s}(3)$	$\sigma_{\mathrm{u}} 4 \mathrm{p}(12)$	$\sigma_{\mathrm{u}} 3 \mathrm{~s}(10)$
$\sigma_{\mathrm{g}} 1 \mathrm{~s}(1)$	$\sigma_{\mathrm{g}} 1 \mathrm{~s}(1)$	$\sigma_{\mathrm{g}} 4 \mathrm{~s}(11)$	$\sigma_{\mathrm{g}} 4 \mathrm{~s}(21)$

${ }^{a}$ Table I is constructed like Table 1 in $\mathrm{V}, 1$ of ref 2 . The numbers in parentheses represent the energy orders at small $R>0$, and large $R<\infty$, for atoms with more than one electron. The energy order for given $/$ but different λ for small R is what is expected on splitting the united atom. For large R the energy order for given l and λ is based on whether the overlap is positive, giving bonding ($\sigma_{\mathrm{g}}, \pi_{\mathrm{u}}$, $\delta_{\mathrm{g}}, \phi_{\mathrm{u}}$ for all l, or negative, giving antibonding ($\sigma_{\mathrm{u}}, \pi_{\mathrm{g}}, \delta_{\mathrm{u}}$, for all l), while for given l and different λ it is based on the magnitude of the overlap (decreasing as λ increases from $\lambda=0$). For small R the overlap within the LCUAO form is positive in every case, having suffered a reversal of sign as compared with large R in the case of those MO's (e.g., $\sigma_{\mathrm{u}} 2 \mathrm{p}$) which are antibonding at large R.
of nearly 3 s UAO form while the other (resembling $3 \mathrm{~d} \sigma$) is a valence-shell MO of $\sigma_{\mathrm{g}} 2 \mathrm{~h}$ LCAO form, where h is a hybrid of mostly $3 \mathrm{p} \sigma$ with some 2 s . The curves of these MO's would cross only at quite small R values such that both are of LCUAO form, and again it makes good sense to ignore the noncrossing rule. It seems likely that this situation is quite general, so that it is justifiable to assume the same crossings to occur in other homopolar diatomic molecules as in $\mathrm{H}_{2}{ }^{+}$.
(4) Electrons in non-Rydberg MO's (e.g., $\sigma_{g} 2 h$ of N_{2}) in general move in much stronger fields than for corresponding $\mathrm{H}_{2}{ }^{+}$MO's (which except for $1 \sigma_{\mathrm{g}}$ and $1 \sigma_{\mathrm{u}}$ must all be classed as Rydberg MO's), and so have much higher ionization energies.

Returning now to the problem of the failure of the minor MO-CM or SCF-MO approximation at large R values, we note again that in the transition region of R values ($R>1.5 R_{\mathrm{e}}$ or $2 R_{\mathrm{e}}$ perhaps), and still more in the AO region, strong MO-CM usually is required, and then (with some exceptions to be discussed later) one cannot in general identify any actual I with the T of a particular MO. The normal, ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$, state (state N) of H_{2} furnishes a simple example. At R_{e} of $\mathrm{H}_{2}(0.74 \mathrm{~A})$, according to very instructive calculations by Das and Wahl, ${ }^{21}$ the MO configuration $1 \sigma_{\underline{z}}{ }^{2}$ strongly predominates (Ψ is $98 \% 1 \sigma_{\mathrm{g}}{ }^{2}$), but there is minor CM (mostly $1 \sigma_{\mathrm{u}}{ }^{2}$, $1 \pi_{\mathrm{u}}{ }^{2}$, and $2 \sigma_{\mathrm{g}}{ }^{2}$). At $1.59 \mathrm{~A}, \Psi$ is still $90 \% 1 \sigma_{\mathrm{g}}{ }^{2}$, while $1 \sigma_{\mathrm{u}}{ }^{2} \mathrm{CM}$ has increased to 9% and other CM has decreased. At $3.18 \mathrm{~A}, 1 \sigma_{\mathrm{g}}{ }^{2}$ has fallen to 56% and $1 \sigma_{\mathrm{u}}{ }^{2}$ has risen to 44%; other CM has now almost disappeared. As $R \rightarrow \infty, \Psi$ becomes $2^{-1 / 2}\left(1 \sigma_{\mathrm{g}}{ }^{2}+1 \sigma_{\mathrm{u}}{ }^{2}\right)$, $1 \sigma_{\mathrm{g}}$ becomes accurately $\sigma_{\mathrm{g}} 1 \mathrm{~s} \equiv 2^{-1 / 2}(1 \mathrm{~s}+1 \mathrm{~s})$, and $1 \sigma_{u}$ becomes accurately $\sigma_{u} 1 \mathrm{~s} \equiv 2^{-1 / 2}(1 \mathrm{~s}-1 \mathrm{~s})$, where in the limit 1 s is accurately free H -atom 1 s . This Ψ is, of course, identical with the HL function $1 \mathrm{~s} \cdot 1 \mathrm{~s},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$.

The example of state N of H_{2} suggests that the usual correlation $1 \mathrm{~s}(\mathrm{UAO})-1 \sigma_{\mathrm{g}}(\mathrm{MO})-\sigma_{\mathrm{g}} 1 \mathrm{~s}(\mathrm{LCAO})$ for the $1 \sigma_{\mathrm{g}} \mathrm{MO}$ as R goes from 0 to ∞, with the implication

[^5] Wahl of Argonne National Laboratory, and subsequent paper by G. Das.
that the 1 s in $\sigma_{\mathrm{g}} 1 \mathrm{~s}$ at $R=\infty$ is a free H-atom 1 s , is seriously wrong or misleading in the range of R values larger than about $2 R_{\mathrm{e}}{ }^{22}$ However, instead of following the actual state $\mathrm{N} \Psi$ from $R=0$ to R_{e} to ∞, it is possible by theoretical calculations to follow the pure SCF-MO $1 \sigma_{g}{ }^{2}$ wave function from $R=0$ to ∞. At $R=0$, this coincides with the SCF-AO $1 \mathrm{~s}^{2}$ wave function for the He atom. It is of interest to note that the energy of this Ψ is too high by 1.144 ev (the correlation energy, CE) ${ }^{23}$ compared with that of the accurate Ψ, because it lacks the needed minor CM. At R_{e}, the CE for the SCF-MO $1 \sigma_{\mathrm{g}}{ }^{2} \Psi$ is still almost the same (1.111 ev). At larger R values, the CE rises, along with the need for increasing $C M$, at first slowly, then faster, to $7.74 \mathrm{ev}^{21}$ as $R \rightarrow \infty$; this CE is the energy difference between pure SCF-MO $1 \sigma_{\mathrm{g}}{ }^{2}$ (here the same as $\sigma_{\mathrm{g}} 1 \mathrm{~s}^{2}$) and the 50:50 mixture of $1 \sigma_{\mathrm{g}}{ }^{2}$ and $1 \sigma_{\mathrm{u}}{ }^{2}$ (identical with the $1 \mathrm{~s} \cdot 1 \mathrm{~s} \mathrm{HL}$ function) which accurately represents state N of H_{2} at $R=\infty$ in MO language. At $R=\infty, I$ for state N of H_{2} is just $I=T=13.6$ ev for 1s of the free H atom if we use the HL function, whereas $I\left(1 \sigma_{\mathrm{g}}\right)=T\left(1 \sigma_{\mathrm{g}}\right)$ for the pure SCF-MO configuration $1 \sigma_{\mathrm{g}}{ }^{2}$ is less than this by $7.74 \mathrm{ev}: T\left(1 \sigma_{\mathrm{g}}\right)=13.60-$ $7.74=5.86 \mathrm{ev}$. For molecules other than H_{2}, similar but more complicated discussions and results are applicable.

One way to look at the above results for H_{2} is to note that as MO-CM increases and becomes major MO-CM at large R, the identification of I of state N with $T\left(1 \sigma_{\mathrm{g}}\right)$ becomes unacceptable, and the usual correlation $1 \mathrm{~s}(\mathrm{UAO})-1 \sigma_{\mathrm{g}}-\sigma_{\mathrm{g}} 1 \mathrm{~s}$ is simply wrong.

An alternative viewpoint is reached on examining why the $1 \sigma_{\mathrm{g}}{ }^{2}$ SCF-MO energy is so much higher than the accurate energy at $R=\infty$. Namely, each electron, in an MO of form $\sigma_{\mathrm{g}} 1 \mathrm{~s}$, is required to move in the field of the nuclei shielded by the other $\sigma_{\mathrm{g}} 1 \mathrm{~s}$ electron, which means that each nucleus is shielded by $-1 / 2 \mathrm{e}$. The energy of $1 \sigma_{\mathrm{g}}{ }^{2}$ is then roughly halfway between that of the HL function $1 \mathrm{~s} \cdot 1 \mathrm{~s}$ and that of the ionic LCAS function $2^{-1 / 2}\left(1 \mathrm{~s}_{\mathrm{a}}{ }^{2}+1 \mathrm{~s}_{\mathrm{b}}{ }^{2}\right)$, and the form of the $1 \mathrm{~s} A O$ in $\sigma_{\mathrm{g}} 1 \mathrm{~s}$ is roughly halfway between that of 1 s in H and 1 s in $1 \mathrm{~s}^{2}$ of H^{-}. If the latter kind of 1 s is used, the correlation $1 \mathrm{~s}(\mathrm{UAO})-1 \sigma_{\mathrm{g}}-\sigma_{\mathrm{g}} 1 \mathrm{~s}(\mathrm{LCAO})$ which in the previous paragraph was found unacceptable, is now acceptable, though academic. Further, the two correlations are qualitatively, or formally, the same.

Correlations and correlation diagrams based on the use of single-configuration SCF-MO wave functions (no CM) all the way from $R=0$ to ∞ can be designated as ideal correlations and correlation diagrams. At the present state of computer capability, it would be feasible, though only of academic or heuristic value, to compute $T(R)$ curves fairly accurately for ideal correlation diagrams of light molecules. However, one would still have to contend with the fact that in general one would obtain different $T(R)$ values for the same MO in different states. ${ }^{24}$

A more practical point of view is that MO correlation diagrams are not intended to have better than rough
(22) In some loosely bound molecules (cf. ref 21 for Li_{2} and F_{2}) the SCF-MO approximation is less good at R_{e} than for H_{2}, and becomes worse more rapidly with increasing R.
(23) The word "correlation" is of course here being used in a different sense than in "correlation diagram,"
(24) Even in H_{2}, where we have been considering $T\left(1 \sigma_{\mathrm{g}}\right)$ just for the ${ }^{1} \Sigma_{g}{ }^{+}$normal state, we could also ask for $T\left(1 \sigma_{\mathrm{g}}\right)$ for among others the states which in MO approximation are denoted $1 \sigma_{\mathrm{g}} 1 \sigma_{\mathrm{u}},{ }^{3} \Sigma_{\mathrm{u}}+$ and $1 \sigma_{\mathrm{g}}-$ $1 \sigma_{\mathrm{u}},{ }^{1} \Sigma_{\mathrm{a}}{ }^{+}$, and find somewhat different values for each of these three states, whether we use ideal correlations or ordinary I values.
meaning. Then in ranges of R values where there is only minor MO-CM, the use as T values of I values averaged in some manner over different states if necessary is surely acceptable. But as soon as there is major MO-CM, a proper correlation no longer exists. An improper correlation such as that which for H_{2} would connect $1 \sigma_{\mathrm{g}}$ at R_{e} (using I of state N for T) with $\sigma_{\mathrm{g}} 1 \mathrm{~s}$ constructed from free H-atom is AO's at ∞, with neutral H -atom I for T, can be called a pseudo-correlation.

As will be seen in another paper, ${ }^{10}$ such pseudocorrelations are of real interest in connection with bonding powers of MO's. Aside from that, pseudocorrelation diagrams have qualitative value as rough empirical approximations to ideal correlation diagrams.

Fortunately there are some situations in which the ordinary correlations remain valid at all R values. Namely, for MO's in those MO closed shells which stand in correspondence to atomic closed shells on dissociation, the complications just discussed largely disappear. The simplest example is state N (a repulsive state) of the He_{2} molecule. Here the SCF-MO wave function corresponding to the MO shell structure $1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}}{ }^{2}$ becomes identical as $R \rightarrow \infty$ with that for the SCF-AO structure $1 \mathrm{~s}_{\mathrm{a}}{ }^{2} 1 \mathrm{~s}_{\mathrm{b}}{ }^{2}$, while the wave functions of the two SCF-MO ionized structures $1 \sigma_{\mathrm{g}}{ }^{2} l \sigma_{\mathrm{u}}$ and $1 \sigma_{\mathrm{g}} 1 \sigma_{\mathrm{u}}{ }^{2}$, corresponding to removal of a $1 \sigma_{\mathrm{u}}$ or a $1 \sigma_{\mathrm{g}}$ electron, respectively, are rather nearly identical (see below) with those of the respective SCF-AO LCAS structures $2^{-1,2}\left(1 \mathrm{~s}_{\mathrm{a}}{ }^{2} 1 \mathrm{~s}_{\mathrm{b}} \pm 1 \mathrm{~s}_{\mathrm{a}} 1 \mathrm{~s}_{\mathrm{b}}{ }^{2}\right)$. Hence the correlations $1 \sigma_{\mathrm{g}}$ $\rightarrow \sigma_{\mathrm{g}} 1 \mathrm{~s}$ and $1 \sigma_{\mathrm{u}} \rightarrow \sigma_{\mathrm{u}}$ ls are valid as R increases from small values to dissociation, with 1 s meaning nearly just the SCF ls of the He atom. ${ }^{25}$
[In the MO wave function of form $\left\{Q\left(1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}}{ }^{2}\right)+\right.$ minor MO-CM \} for He_{2}, where a is the antisymmetrizer, the MO's $1 \sigma_{\mathrm{g}}$ and $1 \sigma_{\mathrm{u}}$ must asymptotically approach the respective forms $2^{-1 / 2}\left(1 \mathrm{~s}_{\mathrm{a}}\right.$ $\pm 1 \mathrm{~s}_{\mathrm{b}}$) as $R \rightarrow \infty$. By expanding and rearranging, it is then easily found that $Q\left(1 \sigma_{\mathrm{s}}{ }^{2} 1 \sigma_{\mathrm{u}}{ }^{2}\right)$ is the same as $Q\left(1 \mathrm{~s}_{\mathrm{s}}{ }^{2} 1 \mathrm{~s}_{\mathrm{b}}{ }^{2}\right)$, and presumably the same equality holds between the exact MO-type wave function and the exact APAS function $\mathbb{Q}\left\{\left(1 \mathrm{~s}_{\mathrm{a}}{ }^{2}+\right.\right.$ minor $\left.\mathrm{AO}-\mathrm{CM}\right)\left(1 \mathrm{~s}_{\mathrm{b}}{ }^{2}\right.$ + minor AO-CM) $\}$.

For the two $\mathrm{He}_{2}{ }^{+}$states as $R \rightarrow \infty$, now neglecting CM for simplicity, the SCF-MO functions are $Q\left[g_{1} \bar{g}_{2} u_{3}\right]$ and $Q\left[u_{1} \bar{u}_{2} g_{3}\right]$, while the corresponding LCAPAS functions are $2^{-1 / 2}\left[a_{1} a_{2} b_{3}{ }^{\prime \prime} \mp b_{1} \bar{b}_{2} a_{3}{ }^{\prime \prime}\right]$, for the ${ }^{2} \Sigma_{u^{+}}+$and ${ }^{2} \Sigma_{z^{\prime}}+$ states, respectively. Here a and b stand for $1 s_{a}$ and $1 s_{b}$ He-atom SCF AO's, $a^{\prime \prime}$ and $b^{\prime \prime}$ for $1 s_{s}$ and $1 s_{b}$ AO's of $\mathrm{He}^{+}, \mathrm{g}$ and u refer to $2^{-1 / 2}\left(\mathrm{a}^{\prime} \pm \mathrm{b}^{\prime}\right)$ where a^{\prime} and b^{\prime} are 1 s AO's which are intermediate in form between He and He^{+}AO's but nearer to the former, the numerical subscripts $1,2,3$ refer to the three electrons, and the orbital symbols with or without a bar over the letter denote that the orbital is to be multiplied by a spin function α or β, respectively, in case the total M_{s} is $+1 / 2$, but β or α in case $M_{\mathrm{s}}=-1 / 2$. Here expansion of the antisymmetrized MO functions in terms of AO's and rearrangement yields expressions $2^{-1 / 2} a\left[a_{1}{ }_{1} a_{2}{ }_{2} b_{3}{ }^{\prime} \mp b_{1}{ }^{\prime} b_{2}{ }^{\prime} a_{3}{ }^{\prime}\right]$ which are formally the same as the accurate LCAPAS functions but differ in having a^{\prime} and b^{\prime} throughout, instead of a, b for the neutral He atom and $\mathrm{a}^{\prime \prime}, \mathrm{b}^{\prime \prime}$ for the He^{+} ion.

This difference, while somewhat like that between the SCF-MO and HL wave function for state N of H_{2} as $R \rightarrow \infty$, can be seen to be a much less major one. This conclusion is decisively supported by an energy computation for which the writer is indebted to Drs. T. L. Gilbert and A. C. Wahl of Argonne National Laboratory. They find an electronic energy of -4.824275 hartrees for either of the SCF-MO functions $1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}}$ or $1 \sigma_{\mathrm{g}} 1 \sigma_{\mathrm{u}}{ }^{2}$ of $\mathrm{He}_{2}{ }^{+}$at $R=\infty$, as compared with -4.861673 hartrees for either of the LCAS functions $2^{-1 / 2}\left[1 \mathrm{~s}_{\mathrm{a}}{ }^{2} 1 \mathrm{~S}_{\mathrm{b}^{\prime \prime}} \pm 1 \mathrm{~s}_{\mathrm{s}^{2}} 1 \mathrm{~S}_{\mathrm{a}^{\prime}}{ }^{\prime \prime}\right]$ using the SCF-AO approximation for $1 \mathrm{~s}^{2}$. Thus the SCF-MO functions are 0.0374 hartrees or 1.017

[^6]ev higher in energy than the SCF-AO LCAS functions, or 2.161 ev higher than the accurate APAS functions after allowing for 1.144 ev of He atom CE in $1 \mathrm{~s}^{2}$. In other words, the CE is 2 ev for the SCF-MO function at ∞, as compared with 1 ev for the SCF-AO APAS function. Thus although more CM is needed for the SCF-MO than for the SCF-AO function to convert it to an exact Ψ at large R values, still only minor CM is needed. Hence this case is very different from that of the normal state of H_{2}, where major MO-CM was required for the SCF-MO function.]

Typical stable molecules have both inner-shell MO's whose correlation behavior as $R \rightarrow \infty$ is like that of the $1 \sigma_{\mathrm{g}}$ and $1 \sigma_{\mathrm{u}}$ MO's in He_{2}, and valence-shell MO's which behave like $1 \sigma_{\mathrm{g}}$ in state N of H_{2}. For example, in N_{2} the correlations $1 \mathrm{~s}_{\mathrm{UA}} \rightarrow 1 \sigma_{\mathrm{g}} \rightarrow \sigma_{\mathrm{g}} 1 \mathrm{~s}_{\mathrm{SA}}$, $2 \mathrm{p} \sigma_{\mathrm{UA}} \rightarrow 1 \sigma_{\mathrm{u}} \rightarrow \sigma_{\mathrm{u}} 1 \mathrm{~s}_{\mathrm{SA}}, 2 \mathrm{~s}_{\mathrm{UA}} \rightarrow 2 \sigma_{\mathrm{g}} \rightarrow \sigma_{\mathrm{g}} 2 \mathrm{~s}_{\mathrm{SA}}$, and $3 \mathrm{p} \sigma_{\mathrm{UA}} \rightarrow 2 \sigma_{\mathrm{u}} \rightarrow \sigma_{\mathrm{u}} 2 \mathrm{~s}_{\mathrm{SA}}$ (where UA refers to the united atom, SA to the separated atoms) all involve closed-shell electrons of the separate atoms, and as $R \rightarrow \infty$ the MO T values to a good approximation go continuously into those of the SAO's indicated. ${ }^{26}$ Thus these inner-shell MO's follow conventional correlation behavior at all R values. Pseudo-correlation at large R values as $R \rightarrow \infty$ occurs only for outershell LCAO-type MO's whose corresponding AO's (i.e., SAO's) typically are valence AO's in the HL theory, e.g., in the case of N_{2}, the $2 \mathrm{p} \sigma$ and $2 \mathrm{p} \pi$ AO's.

It is worth while now to give some attention to the intermediate ranges of R values, beginning with $\mathrm{H}_{2}{ }^{+}$ as prototype. The following scheme (cf. section $\mathrm{V}, 1$ of ref 2) summarizes how the form of an $\mathrm{H}_{2}{ }^{+} \mathrm{MO}$ changes from $R=0$ to ∞.

In the symbols, m or M means modified. ${ }^{27}$ The form of the MO can be described at all R values as $\chi_{a} \pm \chi_{b}$ if in the middle range χ is taken as a strongly modified (M) UAO ($\mathrm{He}^{+} \mathrm{AO}$) or, alternatively, as a strongly modified H -atom SAO. At small R, however, χ is best taken as a mildly modified (m) UAO, and at large R as a mildly modified separated-atom AO. Equation 1 holds not only for $\mathrm{H}_{2}{ }^{+}$but, in ranges of R where they are valid, also for the correlation diagrams of all homopolar diatomic molecules, with UAO and AO taken as SCF AO's of united atom or separated atoms, respectively. Particularly in the middle range of R, the actual MO is an entity which sometimes is far from either a simple LCUAO or a simple LCAO form. Equation 1 is also valid for pseudo-correlation diagrams from $R=0$ to ∞, but then, of course, has not the same meaning in regions of major MO-CM (mainly at large R values).

On the basis of eq 1, the MO region as defined in section 2 includes a UAO or LCUAO subregion. For $\mathrm{H}_{2}{ }^{+}$, this region extends to larger and larger R values with increasing l for given n ($c f$. Table III of ref 2) and with increasing n for given l.

[^7]The R-value ranges for various R regions are conveniently characterized by the reduced internuclear distance ξ, defined ${ }^{28}$ by $R / 2 a$, where a ($c f$. eq 6 of ref 2) is the approximate radius of maximum density for a suitable AO or (see below) STO. In the UAO region (roughly $\xi<\frac{1}{2}$), a of the UAO is of course suitable. Rydberg MO's at Rydberg-state R_{e} values fall in the UAO region. At larger R values (say $\xi \geqslant 1$), one makes use of the fact that any MAO χ in a LCMAO form $\chi_{\mathrm{a}} \pm \chi_{\mathrm{b}}$ can be expressed by a linear combination of STO's. Each STO is characterized by an n and a ζ. A good rule for estimating a and so ξ is then to use in the formula $a=n a_{0} / \zeta$ of eq 6 of ref 2 the n and ζ of the STO whose coefficients are largest in the MAO expression at the given R value (see section $\mathrm{V}, 1$ for discussion of $1 \sigma_{\mathrm{g}}, 1 \pi_{\mathrm{u}}$, and $1 \sigma_{\mathrm{u}}$ of $\mathrm{H}_{2}{ }^{+}$as examples).

In molecules with many electrons, different MO's are in different ξ regions. At R values near R_{e}, the innershell MO's are far out in the LCAO region ($\xi \gg 1$), the normally occupied valence-shell MO's are in the middle region ($\xi \approx 1$), any excited valence-shell MO's are in the intermediate region with ξ perhaps somewhat less than 1, while any Rydberg MO's are in the LCUAO region with $\xi \ll 1$.

As already discussed, ordinary MO correlation is usually replaced for outermost-electron MO's by pseudo-correlation in R ranges where major CM is required. For Rydberg states of even-electron molecules the onset of major CM depends mainly not on ξ of the Rydberg MO but on ξ for the valence-shell electrons of the core. CM becomes important when ξ for these reaches perhaps about 1.5 or 2 ; i.e., R reaches about $1.5 R_{\mathrm{e}}$ or $2 R_{\mathrm{e}}$. At these R values, ξ for Rydberg MO's, even for those of smallest n, is already small. Thus for Rydberg states, major CM normally sets in already in the UAO region of the Rydberg MO, long before its LCAO region is reached. For H_{2}, the beginning of major CM is estimated to occur for Rydberg states, $1 \sigma_{\mathrm{g}} \mathrm{nx}$ ($\mathrm{nx}=$ Rydberg MO) at about 1.8 A , or ξ about 0.4 for 2 s or $2 \mathrm{p} \pi$ Rydberg MO's and about 0.2 for $3 \mathrm{~s}, 3 \mathrm{p} \pi$, or $3 \mathrm{~d} \sigma, \pi, \delta$ MO's. The discussion in this section has been nearly entirely in terms of homopolar molecules. However, rather similar considerations apply to heteropolar molecules.

For odd-electron molecules with core at R_{e} in a closedshell MO state, major CM at large R affects the valence MO's in the core, yet leaves any Rydberg electron essentially independent so that ordinary HeH^{+}-like correlation can occur; hence, now the Rydberg MO and its T remain significant as $R \rightarrow \infty$. For example, the lowest excited Σ state of NO is a Rydberg state of structure ($\mathrm{NO}^{+},{ }^{1} \Sigma^{+}$) $3 \mathrm{~s},{ }^{2} \Sigma^{+}$at all R values, if we ignore the homogenous perturbations (see section 3) which must occur during the successive crossings of its potential curve by those of nine valence-shell ${ }^{2} \Sigma^{+}$states on its way out to dissociation into $\mathrm{N}\left(\mathrm{p}^{3},{ }^{4} \mathrm{~S}\right)+\left(\mathrm{O}^{+}, \mathrm{p}^{3},{ }^{4} \mathrm{~S}\right)$ $3 \mathrm{~s},{ }^{5} \mathrm{~S}$. During the passage to large R values, the NO^{+} core has to go through radical CM changes.

5. Dissociation Correlations for Rydberg States of H_{2} and He_{2}

It might be thought that the complication of major MO-CM at large R discussed in section 2 would not
(28) Cf. R. S. Mulliken, J. Am. Chem. Soc., 72, 4493 (1950), where the parameter ξ, originally introduced in ref 6 but poorly named, was renamed.
occur for Rydberg states, and that one could assume that the molecular core and the Rydberg electron could be treated as changing independently thoughout the range of R from 0 to ∞. If that were true, the T and n^{*} values for a Rydberg MO could properly be followed through all the way. Such a correlation would correspond to the usual practice of finding immediate significance in a direct comparison of T and n^{*} values for a Rydberg MO taken near R_{e} with the T and n^{*} values of the Rydberg AO of one of the atomic dissociation products of the molecular Rydberg state in question. However, as was pointed out in section 4, such a comparison represents only a pseudo-correlation in the case of even-electron molecules. Instead, one should look for relations to united-atom T and n^{*} values.

To illustrate, let us first consider the $1 \sigma_{\mathrm{g}} 1 \pi_{\mathrm{u}},{ }^{3} \Pi_{\mathrm{u}}$ and ${ }^{1} \Pi_{\mathrm{u}}$ and the $1 \sigma_{\mathrm{g}} 1 \pi_{\mathrm{g}},{ }^{3} \Pi_{\mathrm{g}}$ and ${ }^{1} \Pi_{\mathrm{g}}$ states of H_{2}, each of which is the lowest member of a Rydberg series of states. ${ }^{29}$ Near R_{e}, which is close to that of $\mathrm{H}_{2}{ }^{+}$, the (unnormalized) forms of the SCF MO's can be described as

$$
\begin{gather*}
1 \sigma_{\mathrm{g}} \approx\left(1 \mathrm{~s}_{\mathrm{a}}+\lambda 2 \mathrm{p} \sigma_{\mathrm{a}}\right)^{1.2}+\left(1 \mathrm{~s}_{\mathrm{b}}+\lambda 2 \mathrm{p} \sigma_{\mathrm{b}}\right)^{1.2} \equiv \\
\sigma_{\mathrm{g}} 1 \mathrm{~s}^{1.2}+\lambda \sigma_{\mathrm{g}} 2 \mathrm{p}^{1.2} \\
1 \pi_{\mathrm{u}} \approx 2 \mathrm{p} \pi_{\mathrm{UA}}{ }^{(1 / 2)} \approx \pi_{\mathrm{u}} 2 \mathrm{p}_{\mathrm{UA}}{ }^{(1 / 2)} \tag{2}\\
1 \pi_{\mathrm{g}} \approx 3 \mathrm{~d} \pi_{\mathrm{UA}}{ }^{(1 / 3)} \approx \pi_{\mathrm{g}} 3 \mathrm{~d}_{\mathrm{UA}}{ }^{(1 / 3)}
\end{gather*}
$$

(The superscripts in parentheses refer to orbital exponents.) As is shown by their experimental n^{*} values, the $1 \pi_{\mathrm{u}}$ and $1 \pi_{\mathrm{g}}$ MO's undoubtedly resemble united-atom (He) Rydberg AO's, which here are nearly H -atom-like.

Antisymmetric SCF-MO approximation wave functions (unnormalized) corresponding to the above four states can be written as follows.

$$
\begin{aligned}
\Psi_{\mathrm{MO}}\left(1 \sigma_{g} 1 \pi_{u},{ }^{1} \Pi_{u} \text { or }{ }^{3} \Pi_{u}\right)= & {\left[1 \sigma_{\mathrm{g}}(1) 1 \pi_{u}(2) \pm\right.} \\
& \left.1 \sigma_{\mathrm{g}}(2) 1 \pi_{\mathrm{u}}(1)\right]\left[\Psi_{\mathrm{s}} \text { or } \Psi_{\mathrm{r}}\right]
\end{aligned}
$$

$$
\begin{align*}
\Psi_{\mathrm{MO}}\left(1 \sigma_{\mathrm{g}} 1 \pi_{\mathrm{g}},{ }^{1} \Pi_{\mathrm{g}} \text { or }{ }^{3} \Pi_{\mathrm{g}}\right)= & {\left[1 \sigma_{\mathrm{g}}(1) 1 \pi_{\mathrm{g}}(2) \pm\right.} \tag{3}\\
& \left.1 \sigma_{\mathrm{g}}(2) 1 \pi_{\mathrm{g}}(1)\right]\left[\Psi_{\mathrm{S}} \text { or } \Psi_{\mathrm{T}}\right]
\end{align*}
$$

In eq 3, 1 and 2 refer to the two electrons, and the + or - signs go with the singlet or triplet spin factors Ψ_{s} or Ψ_{T}, respectively. For R near R_{e}, the briefly symbolized MO's in eq 3 are described in eq 2. But as R is increased, their forms must change; they may be expected to behave very much like those of $\mathrm{H}_{2}{ }^{+}(c f$. section $V, 1$) except that the effective Z here is always near 1 instead of being 2 for $R=0$ and changing to 1 as $R \rightarrow \infty$. Most notably, the $1 \pi_{8}$ MO of H_{2} must change from the $\pi_{\mathrm{g}} 3 \mathrm{~d}$ LCUAO form to the $\pi_{\mathrm{g}} 2 \mathrm{p}$ LCAO form when R becomes sufficiently large. ${ }^{27 b}$ More specifically, $1 \pi_{\mathrm{u}}$ and $1 \pi_{\mathrm{g}}$ at intermediate R values must assume the forms

$$
\begin{gather*}
1 \pi_{\mathrm{u}}=a \pi_{\mathrm{u}} 2 \mathrm{p}^{(5)}+b \pi_{\mathrm{u}} 3 \mathrm{~d}^{\left(\xi^{\prime}\right)}+\ldots \\
1 \pi_{\mathrm{g}}=a^{\prime} \pi_{\mathrm{g}} 3 \mathrm{~d}^{\left(\zeta^{\prime \prime}\right)}+b^{\prime} \pi_{\mathrm{g}} 2 \mathrm{p}^{\left(\zeta^{\prime \prime \prime}\right)}+\ldots \tag{4}
\end{gather*}
$$

Then as $R \rightarrow \infty$, the (always relatively minor) $\pi_{\mathrm{u}} 3 \mathrm{~d}$
(29) The ${ }^{3} \Pi_{g}$ state has been the subject of a recently published intensive study, ${ }^{5 \Omega}$ yielding an accurate potential curve from $R=R_{\mathrm{e}}$ to ∞. The present more qualitative discussion seems justified as providing added physical insight.
term in $1 \pi_{\mathrm{u}}$ must disappear again while in $1 \pi_{\mathrm{g}}$ the $\pi_{\mathrm{g}} 3 \mathrm{~d}$ term which is predominant at smaller R must disappear leaving only $\pi_{8} 2 p$.

In addition to changes in the forms of the MO's, other changes from eq 3 must also occur as R increases. In view of the noncrossing rule (and assuming, as calculations show to be justified, that relevant nondiagonal matrix elements are substantial), we know that the lowest energy ${ }^{1} \Pi_{u},{ }^{3} \Pi_{u},{ }^{1} \Pi_{g}$, and ${ }^{3} \Pi_{g}$ states of H_{2}, which at R_{e} are given by eq 2 and 3 , must correlate as $R \rightarrow \infty$ with the lowest-energy LCAS states of the same species, whose (unnormalized) wave functions are as follows.

$$
\begin{gathered}
\Psi_{\mathrm{LCAS}}\left({ }^{1,3} \Pi_{\mathrm{u}, \mathrm{~g}}\right)=\left\{\left[1 \mathrm{~s}_{\mathrm{a}}(1) 2 \mathrm{p} \pi_{\mathrm{b}}(2) \pm 1 \mathrm{~s}_{\mathrm{b}}(1) 2 \mathrm{p} \pi_{\mathrm{a}}(2)\right] \pm\right. \\
\left.\left[1 \mathrm{~s}_{\mathrm{a}}(2) 2 \mathrm{p} \pi_{\mathrm{b}}(1) \pm 1 \mathrm{~s}_{\mathrm{b}}(2) 2 \mathrm{p} \pi_{\mathrm{a}}(1)\right]\right\}\left[\Psi_{\mathrm{S}} \text { or } \Psi_{\mathrm{T}}\right]
\end{gathered}
$$

Here the \pm signs between the two pairs of brackets belong with Ψ_{S} and Ψ_{T}, respectively; the \pm signs in the middle of each pair of brackets correspond to the Π_{u} and Π_{g} states, respectively (+ for u , - for g). For later reference to the four LCAS states of eq 5, the following brief symbols ${ }^{9}$ will be found convenient.

$$
\begin{aligned}
& (1 \mathrm{~s} \cdot 2 \mathrm{p} \pi)_{\mathrm{u}} \equiv \Psi_{\mathrm{LCAS}}\left({ }^{1} \Pi_{\mathrm{u}}\right), \quad(1 \mathrm{~s} \cdot 2 \mathrm{p} \pi)_{\mathrm{g}} \equiv \Psi_{\mathrm{LCAS}}\left({ }^{1} \Pi_{\mathrm{g}}\right) \\
& (1 \mathrm{~s} \times 2 \mathrm{p} \pi)_{\mathrm{u}} \equiv \Psi_{\mathrm{LCAS}}\left({ }^{3} \Pi_{\mathrm{u}}\right),(1 \mathrm{~s} \times 2 \mathrm{p} \pi)_{\mathrm{g}} \equiv \Psi_{\mathrm{LCAS}}\left({ }^{(} \Pi_{\mathrm{g}}\right)
\end{aligned}
$$

One might be inclined to call the states of eq 5 and 6 Heitler-London-type states, but this is probably inadvisable since the interactions are more complicated than for true HL states.

To bridge the gap between eq 3 and 5, it is necessary to introduce CM, which at R_{e} is no doubt relatively small. Let us begin with eq 3 and mix $1 \sigma_{\mathrm{u}} 1 \pi_{\mathrm{g}},{ }^{3} \Pi_{\mathrm{u}}$ with $1 \sigma_{\mathrm{g}} 1 \pi_{\mathrm{u}},{ }^{3} \Pi_{\mathrm{u}}$ and $1 \sigma_{\mathrm{u}} 1 \pi_{\mathrm{u}},{ }^{3} \Pi_{\mathrm{g}}$ with $1 \sigma_{\mathrm{g}} 1 \pi_{\mathrm{g}},{ }^{3} \Pi_{\mathrm{g}}$, and similarly for the corresponding singlet states. For the four admixed states in SCF-MO approximation, equations identical with eq 3 are valid except that g and u are exchanged for every MO. Since $1 \sigma_{\mathrm{u}}$ is strongly antibonding, these states must be high-energy states, although it appears that they should have stable minima at relatively large R values ($c f$. footnote 13 of ref 3). For the mixed states

$$
\begin{aligned}
\Psi\left({ }^{1,3} \Pi_{\mathrm{u}}\right)= & \left\{\left[1 \sigma_{\mathrm{g}}(1) 1 \pi_{\mathrm{u}}(2) \pm 1 \sigma_{\mathrm{g}}(2) 1 \pi_{\mathrm{u}}(1)\right]+\right. \\
& \left.\alpha\left[1 \sigma_{\mathrm{u}}(1) 1 \pi_{\mathrm{g}}(2) \pm 1 \sigma_{\mathrm{u}}(2) 1 \pi_{\mathrm{g}}(1)\right]\right\}\left[\Psi_{\mathrm{S}} \text { or } \Psi_{\mathrm{T}}\right]
\end{aligned}
$$

$$
\begin{align*}
\Psi\left({ }^{1,3} \Pi_{\mathrm{g}}\right)= & \left\{\left[1 \sigma_{\mathrm{g}}(1) 1 \pi_{\mathrm{g}}(2) \pm 1 \sigma_{\mathrm{g}}(2) 1 \pi_{\mathrm{g}}(1)\right]+\right. \tag{7}\\
& \left.\beta\left[1 \sigma_{\mathrm{u}}(1) 1 \pi_{\mathrm{u}}(2) \pm 1 \sigma_{\mathrm{u}}(2) 1 \pi_{\mathrm{u}}(1)\right]\right\}\left[\Psi_{\mathrm{S}} \text { or } \Psi_{\mathrm{T}}\right]
\end{align*}
$$

with $\alpha \rightarrow 0, \beta \rightarrow 0$ as $R \rightarrow 0$.
In eq 7 , the forms of the MO's $1 \sigma_{g}, 1 \sigma_{u}, 1 \pi_{u}$, and $1 \pi_{\mathrm{g}}$ must, as already noted, change continuously as R goes from 0 to ∞ (cf. eq 4 for the π MO's; for the σ MO's, σ_{g} goes from the σ_{g} 1s LCUAO form at 0 to the $\sigma_{g} 1$ L LCAO form at ∞ with some admixtures (cf. eq 3) at intermediate R values, while σ_{u} goes from the $\sigma_{\mathrm{u}} 2 \mathrm{p}$ LCUAO or $2 \mathrm{p} \sigma$ UAO form at $R=0$ to the $\sigma_{\mathrm{u}} 1 \mathrm{~s}$ LCAO form at $R=\infty$, with some other admixtures at intermediate R values. The behavior of the MO's (especially $1 \pi_{\mathrm{g}}$) at intermediate R values has interesting consequences to be discussed below, but the complete picture can be presented correctly, and more lucidly, if at first we skip from $R=R_{\mathrm{e}}$ to $R=\infty$ and introduce in eq 7 LCAO expressions for the MO's
which are good approximations at large R, namely

$$
\begin{equation*}
\sigma_{\mathrm{g}}, \sigma_{\mathrm{u}}=1 \mathrm{~s}_{\mathrm{a}} \pm 1 \mathrm{~s}_{\mathrm{b}} ; \pi_{\mathrm{u}}, \pi_{\mathrm{g}}=2 \mathrm{p} \pi_{\mathrm{a}} \pm 2 \mathrm{p} \pi_{\mathrm{b}} \tag{8}
\end{equation*}
$$

On multiplying out, one readily verifies that, for $\alpha=$ -1 and $\beta=1$, eq 7 reduce to eq 5 . 30 One concludes that α and β both change gradually from small negative values at R_{e} to -1 at $R=\infty$.

On the other hand, for $\alpha=+1$ and $\beta=+1$, one gets ${ }^{30}$

$$
\begin{gather*}
\Psi_{\text {ionic }}\left({ }^{1,3} \Pi_{\mathrm{u}, \mathrm{~g}}\right)=\left\{\left[1 \mathrm{~s}_{\mathrm{a}}(1) 2 \mathrm{p} \pi_{\mathrm{a}}(2) \pm 1 \mathrm{~s}_{\mathrm{b}}(1) 2 \mathrm{p} \pi_{\mathrm{b}}(2)\right] \pm\right. \\
\left.\left[1 \mathrm{~s}_{\mathrm{a}}(2) 2 \mathrm{p} \pi_{\mathrm{a}}(1) \pm 1 \mathrm{~s}_{\mathrm{b}}(2) 2 \mathrm{p} \pi_{\mathrm{b}}(1)\right]\right\}\left[\Psi_{\mathrm{S}} \text { or } \Psi_{\mathrm{T}}\right] \tag{9}
\end{gather*}
$$

The wave functions of eq 9 are recognized as corresponding to $\mathrm{H}^{+}+\mathrm{H}^{-}\left(1 \mathrm{~s} 2 \mathrm{p} \pi,{ }^{1,3} \mathrm{I}\right)$. At $R=\infty$ these are only virtual states, since excited 1 s 2 p states of H^{-}can scarcely be stable, ${ }^{31}$ but at smaller R values the stabilizing influence of H^{+}on excited H^{-} should convert them into real states.

One can now invert the reasoning that led from eq 7 to 5 and 9. If we start from $R=\infty$ and proceed toward R_{e}, we have at first the LCAS group of four states, ${ }^{1,3} \Pi_{\mathrm{g}, \mathrm{u}}$, and a higher-energy group of virtual ionpair states of the same types. As R decreases, the wave functions of states of like species in these two groups mix more and more, both because of increasing matrix elements and because of decreasing energy separations. Thus we have, for each of the four species

$$
\begin{equation*}
\Psi=\Psi_{\mathrm{LCAS}} \pm \gamma \Psi_{\mathrm{ionic}} \tag{10}
\end{equation*}
$$

If we approximate $\Psi_{\text {LCAS }}$ and $\Psi_{\text {ion }}$ by eq 5 and 9 , respectively, with the $A O$'s $1 s$ and $2 p \pi$ assumed the same in $\Psi_{\text {ion }}$ as in $\Psi_{\text {LCAS }}$, and assume eq 8 for the MO's, then for $\gamma=+1$ we obtain the familiar $1 \sigma_{g} 1 \pi_{u},{ }^{1,3} \Pi_{u}$ and $1 \sigma_{g} 1 \pi_{g},{ }^{1,3} \Pi_{g}$ Rydberg states as in eq 3, while for $\gamma=-1$ we obtain the high-energy $1 \sigma_{u} 1 \pi_{\mathrm{g}},{ }^{1,3} \Pi_{\mathrm{u}}$ and $1 \sigma_{\mathrm{u}} 1 \pi_{\mathrm{u}},{ }^{1,3} \Pi_{\mathrm{g}}$ predicted Rydberg states with repulsive cores ($c f$. footnote 13 of ref 3). However, although we have used eq 7 and 8 to obtain these conclusions, we must recognize that concurrently with the growth of γ the forms of the MO's must depart from those of eq 8 , the most radical departure being the change of the $1 \pi_{\mathrm{g}}$ MO from its large R form $\pi_{\mathrm{g}} 2 \mathrm{p}_{\mathrm{SA}}$ to its small R form $3 \mathrm{~d} \pi_{g}\left(c f\right.$. eq 4). ${ }^{32}$

At this point it becomes relevant to refer to theoretical calculations which have been made on the lowest ${ }^{1,3} \Pi_{u}$ and ${ }^{1,3} \Pi_{\mathrm{g}}$ states of H_{2}. Already in the early days of quantum mechanics, Kemble and Zener computed potential curves corresponding to the four pure LCAS functions 5 or 6 , using free-atom ($Z=1$) 1s and $2 \mathrm{p} \pi$ AO's. The calculation showed stable attractive ${ }^{3} \Pi_{u}$ and ${ }^{1} \Pi_{u}$ states but strongly repulsive ${ }^{3} \Pi_{g}$ and ${ }^{1} \Pi_{\mathrm{g}}$ states.
(30) In the passage from eq 7 with $\alpha<0$ and $\beta<0$ to the limiting case of eq 5, we may assume that 1 s and $2 \mathrm{p} \pi$ of eq 8 go over to H -atom AO's as $R \rightarrow \infty$. In the passage from eq. 7 with $\alpha \gg+1$ and $\beta \gg$ +1 (which represent the higher energy ${ }^{1.3} \Pi_{u}$ and ${ }^{1,3} \Pi_{g}$ states) to the limiting case of eq 9 , we must in the limit assume quite different 1 s and $2 \mathrm{p} \pi$ AO's in eq. 8. However, we are actually not much interested in eq 9 , since they become completely unrealistic as $R \rightarrow \infty$.
(31) C. L. Pekeris, Phys. Rev., 126, 1470 (1962), has shown that the $1 \mathrm{~s} 2 \mathrm{~s},{ }^{3} \mathrm{~S}$ and ${ }^{1} \mathrm{~S}$ states of H^{-}are unstable or at best barely stable.
(32) Although the $1 \sigma_{\mathrm{u}}$ MO must also change its form from $\sigma_{\mathrm{u}} 1_{\mathrm{SSA}}$ to $2 p \sigma_{\mathrm{UA}}$ as $R \rightarrow 0$, the change toward the UA form cannot have progressed nearly as far, at R_{e} of the Rydberg states (near R_{e} of $\mathrm{H}_{2}{ }^{+}$), as for $1 \pi_{g}$, and we shall in the present discussion neglect this extra complication and the related complication that $\sigma_{\mathrm{g}} 1 \mathrm{~s}$ does not retain quite the simple $\sigma_{\mathrm{g}} 1 \mathrm{~s}$ form near R_{e}.

Let us try to understand these results, beginning with the II_{u} states. For them, the agreement of the simple (i.e., free-atom 1 s and $2 \mathrm{p} \pi$) LCAS calculation with experiment is roughly as good as for the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$normal state of H_{2}, where LCAS is HL. In the case of the latter state, as is well known, the $\sigma_{g} l \mathrm{~s}^{2}$ MO structure (which is the same as a $50: 50$ linear combination of HL with ionic wave functions) gives nearly as good agreement as the HL when 1s AO's with $Z=1$ are used throughout. Better agreement with experiment is obtained for a linear combination which is predominantly HL but to some extent ionic ($c f$. eq 10 with $0<\gamma<1$), or, alternatively (and equivalently), for a linear combination of $\sigma_{\mathrm{g}} 1 \mathrm{~s}^{2}$ with some $\sigma_{\mathrm{u}} 1 \mathrm{~s}^{2}$. These agreements with experiment are further improved if 1 s AO's with $Z \neq 1$ are used. As has been pointed out by Slater, ${ }^{33}$ the HL and ionic AO-type functions, though orthogonal at $R=\infty$, are highly nonorthogonal at R_{e} of state N of H_{2}. In fact, they are then much more nearly alike than different. ${ }^{34}$ Actually this is not surprising when one notes that the HL and ionic, and indeed also the MO and UAO, functions become formally identical at $R=0$.

Analogous relations hold for the $1 \mathrm{~s} \cdot 2 \mathrm{p} \pi$ and $1 \mathrm{~s} \times 2 \mathrm{p} \pi,{ }^{1,3} \Pi_{u}$ LCAS states (see eq 5 and 9 for the LCAS and ionic functions) and make understandable the rather good agreement of the simple LCAS Ψ 's (still better if increased Z is used for 1 s) with experiment without inclusion of any $\Psi_{\text {ionic. }}$. In other words, addition of $\Psi_{\text {ionic }}$ (cf. eq 10), because to a rather large extent it is the same as $\Psi_{\text {LCAS }}$, does not contribute to improving $\Psi_{\text {LCAS }}$ as much as, on the basis of the discussion preceding eq 10 , one might have naively expected. Or to put it in still another way, $1 \mathrm{~s} 2 \mathrm{p} \pi, \Pi_{u}$ LCAS functions apparently are not bad approximations to the correct Ψ 's for the Rydberg states whose MO configuration description is $1 \sigma_{\mathrm{g}} 1 \pi_{\mathrm{u}}$. Nevertheless, if SCF MO's are used for $1 \sigma_{g}$ (which is nearly the same here as in $\mathrm{H}_{2}{ }^{+}$) and for $1 \pi_{u}$ (rather nearly like a $2 \mathrm{p} \pi_{\mathrm{UA}}$ AO with $Z=1$), the $1 \sigma_{\mathfrak{g}} 1 \pi_{u},{ }^{1,3} \Pi_{u}$ MO-type Ψ 's are undoubtedly very considerably better than the LCAS at R_{e}, and at R_{e} doubtless need only relatively little CM to make them exact. As $R \rightarrow 0$, however, the LCAS, ionic, MO, and UAO single-configuration functions all become formally identical, in the same way as for the normal state of H_{2}.

Turning now to the lowest-energy ${ }^{3} \Pi_{g}$ and ${ }^{1} \Pi_{g}$ states, we know experimentally that at R values near R_{e} of $\mathrm{H}_{2}{ }^{+}$, these are Rydberg states with stable minima (here they are well describable by the MO configuration $1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \pi$), while according to the noncrossing rule their wave functions must as $R \rightarrow \infty$ go over to the $1 \mathrm{~s} 2 \mathrm{p} \pi,{ }^{1,3} \Pi_{\mathrm{g}}$ LCAS functions. The $v=0$ levels for these states are only 0.66 ev below the energy of the separated ($1 \mathrm{~s}+2 \mathrm{p}$) atoms, and a consideration of the experimental constants of the potential curves indicates that the energies rise to a maximum with increasing R before descending to their $1 \mathrm{~s}+2 \mathrm{p}$ asymptotes as $R \rightarrow \infty .{ }^{35}$ Since the $1 \mathrm{~s} 2 \mathrm{p} \pi,{ }^{1,3} \Pi_{\mathrm{g}}$ LCAS
(33) J. C. Slater, J. Chem. Phys., 19, 220 (1951); and 'Quantum Theory of Molecules and Solids," Vol. I, 'Electronic Structure of Molecules," McGraw-Hill Book Co., Inc., New York, N. Y., 1963.
(34) The extent of nonorthogonality depends, of course, on whether free-atom is AO's or modified AO's are used.
(35) See ref 3 , footnote 13 . The discussion in ref 3 refers primarily to He_{2}, but analogous considerations apply for most of the Rydberg states of H_{2} (see Table IV below for data on both).
functions give only pure repulsion curves, something more general is evidently required.
Browne ${ }^{4 b}$ computed approximate ${ }^{1} \Pi_{\mathrm{g}}$ and ${ }^{8} \Pi_{\mathrm{g}}$ potential curves using as a trial function a linear combination of $1 \mathrm{~s} 2 \mathrm{p} \pi$ and $1 \mathrm{~s} 3 \mathrm{~d} \pi$ LCAS functions.

$$
\begin{align*}
& \Psi\left({ }^{3} \Pi_{\mathrm{g}}\right)=c \Psi(1 \mathrm{~s} \times 3 \mathrm{~d} \pi)_{\mathrm{g}}+d \Psi(1 \mathrm{~s} \times 2 \mathrm{p} \pi)_{\mathrm{g}} \\
& \Psi\left({ }^{(} \Pi_{\mathrm{g}}\right)=c^{\prime} \Psi(1 \mathrm{~s} \cdot 3 \mathrm{~d} \pi)_{\mathrm{g}}+d^{\prime} \Psi(1 \mathrm{~s} \cdot 2 \mathrm{p} \pi)_{\mathrm{g}} \tag{11}
\end{align*}
$$

(He also included 1s3p π functions, but their effect was relatively minor; it is nearly the same ${ }^{27 a}$ as merely adding $2 \mathrm{p} \pi$ with a modified scale factor.) At large $R, c, c^{\prime} \rightarrow 0$ and $d, d^{\prime} \rightarrow 1$, while at R values near R_{e} of $\mathrm{H}_{2}{ }^{+}, c, c^{\prime}$ approach 1 and d, d^{\prime} become small. The computed energy goes over a maximum at R near 2 A , with a minimum at R roughly equal to the experimental $R_{\mathrm{e}}(1.06 \mathrm{~A})$ of the $1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \pi$ Rydberg states, although considerably higher in energy. The existence of a maximum in the ${ }^{3} \Pi_{\mathrm{g}}$ curve has also been confirmed by the accurate calculations of Wright and Davidson. ${ }^{52}$
Thus with the double LCAS functions of eq 11, there is a closeness of agreement with experiment similar to that found for the ${ }^{1,3} \Pi_{u}$ states using the $1 \mathrm{~s} 2 \mathrm{p} \pi$ single LCAS functions. The fact that moderately good agreement with experiment and with expectations for the MO wave functions $1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \pi,,^{1,8} \Pi_{\mathrm{g}}$ is obtained without adding ionic terms as in eq 10 is evidently to be explained in the same way as for the ${ }^{1,8} \Pi_{u}$ states. Namely, while inclusion of the corresponding ionic terms should lead to marked improvement, the strong nonorthogonality of the former to the LCAS terms enables the latter alone to go far ${ }^{36}$ toward representing the accurate wave functions. However, while for the normal state of H_{2} eq 10 with a relatively small γ minimizes the energy, it seems clear that γ values approaching +1 for ${ }^{1,3} \Pi_{u}$ and -1 for ${ }^{1,3} \Pi_{g}$ would be best for the Rydberg states, which are much more accurately representable by a single MO configuration $\left(1 \sigma_{\mathrm{g}} 2 \mathrm{p} \pi\right.$ or $\left.1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \pi\right)$ than in the case of the normal state. It is now evident that eq 10 gives good MO wave functions for the lowest ${ }^{1,3} \Pi_{u}$ and ${ }^{1,3} \amalg_{g}$ Rydberg states if for $\Psi_{\text {apas }}$ we use ($\left.1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{\mathrm{u}}$ functions for the ${ }^{1,3} \Pi_{\mathrm{u}}$ states but use the double LCAS functions of eq 11 for the ${ }^{1,3} \Pi_{g}$ states, and if at the same time we let $\pm \gamma$ change from 0 at large R to values near ± 1 near the R_{e} values of the Rydberg states. (Further, the ζ values for the AO's, especially 1 s , must not be left at their free-atom values, but must be readjusted to minimize the energy.) In contrast to those for the normal and the ${ }^{1,3} \Pi_{u}$ states, the ${ }^{1,3} \Pi_{g}$ LCAS functions which are valid as $R \rightarrow \infty$, and the corresponding ionic functions, do not now become formally identical with the MO and UAO functions as $R \rightarrow 0$.
Reversing the argument used above and proceeding outward from R_{e} to large R values, we may start again with eq 7. If now (as was clearly what we should have done) we substitute eq 4 for $1 \pi_{\mathrm{u}}$ and $1 \pi_{\mathrm{g}}$ in eq 7 , we see that as α and β change from 0 toward -1 , eq 7 can reduce for the ${ }^{1,3} \Pi_{\mathrm{g}}$ states approximately to the double HL form of eq 11 , with d at first large and c small as R increases beyond R_{e}, but d decreasing and c

[^8]increasing as R increases, until $d \rightarrow 0$ and $c \rightarrow 1$ as $R \rightarrow \infty .{ }^{37}$ It seems likely that the R values at which $c=d$ and $c^{\prime}=d^{\prime}$ are near the maxima of the respective potential curves.

If the argument of the preceding paragraph using eq 7 and 4 is applied to the ${ }^{3} \Pi_{u}$ and ${ }^{1} \Pi_{u}$ states, one concludes that their wave functions should be better approximated at intermediate R values by the double LCAS forms

$$
\left.\begin{array}{c}
\Psi\left({ }^{3} \Pi_{\mathrm{u}}\right)=f \Psi(1 \mathrm{~s} \times 2 \mathrm{p} \pi)_{\mathrm{u}}+g \Psi(1 \mathrm{~s} \times 3 \mathrm{~d} \pi)_{\mathrm{u}} \tag{12}\\
\Psi\left(\Pi_{\mathrm{u}}\right)=f^{\prime} \Psi(1 \mathrm{~s} \cdot 2 \mathrm{p} \pi)_{.}+g^{\prime} \Psi(1 \mathrm{~s} \cdot 3 \mathrm{~d} \pi)
\end{array}\right\}
$$

than by the simple forms with $f=f^{\prime}=1$ and $g=g^{\prime}=$ 0 . However, the improvement here is relatively minor, ${ }^{38}$ in contrast to the essentiality of the corresponding improvement in eq 11 for the ${ }^{1,3} \Pi_{\mathrm{g}}$ states.

The procedure just used in approximately deriving the double LCAS functions 11 and 12 from the MO + CM equations (7) by substituting double LCAO expressions as in eq 4 for the MO's can be applied equally well to all Rydberg states of H_{2}. For each Rydberg state of configuration $1 \sigma_{\mathrm{g}} \mathrm{m} \lambda_{\mathrm{p}}$ (where p is the parity (g or u) of the Rydberg $\mathrm{MO} \mathrm{m} \lambda_{\mathrm{p}}$) and for its CM complement $1 \sigma_{\mathrm{u}} \mathrm{m} \lambda_{\mathrm{q}}$ (where q is the parity opposite to p), the appropriate double LCAO expressions for $m \lambda_{p}$ and $m \lambda_{q}$, taken to be formally the same as for like-labeled MO's of $\mathrm{H}_{2}{ }^{+}$(see V,1), can be written down in the manner of eq 4 and substituted into the proper analogs to eq 7 to yield double LCAS functions analogous to eq 11 and 12 .

Results of this procedure are collected in Table II for many of the lower-energy Rydberg states of H_{2} and for the valence-shell states. Only those LCAS functions (in one case also the $\left(1 s^{2}\right)_{u}$ ionic APAS) are listed which are believed to be necessary and sufficient to yield qualitatively correct $U(R)$ curves. Guided by the $\mathrm{H}_{2}{ }^{+}$forms, LCAS expressions with hybrid AO's (i.e., parabolic-coordinate H-atom quantization; cf. $\mathrm{V}, 1$) occur for large R in a number of cases. Alternatively, these can be viewed as double LCAS functions; for example, $1 \mathrm{~s} \cdot 2 \mathrm{di}^{\prime}$ is the same as $2^{-1 / 2}$. ($1 \mathrm{~s} \cdot 2 \mathrm{~s}-1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma$). Actually in such cases the coefficients of the components of a hybrid LCAS function at large R are for one or two reasons not expected to be exactly those for the ideal hybrid. In fact at very large R, where valence forces have become negligible, hybridization is lost because first-order dispersion forces cause otherwise degenerate LCAS functions of different l to have slightly different energies; ${ }^{39}$ thus strictly speaking each $U(R)$ curve must correspond asymptoti-
(37) The accurate description is more complicated because b / a for $1 \pi_{\mathrm{u}}$ in eq 4 is presumably considerably smaller than b^{\prime} / a^{\prime} for $1 \pi_{\mathrm{g}}$. It should further be kept in mind that the coefficients in eq 4 vary with R, also that the function pairs $\pi_{u} 2 \mathrm{p}$ and $\pi_{\mathrm{u}} 3 \mathrm{~d}$, likewise $\pi_{\mathrm{g}} 3 \mathrm{~d}$ and $\pi_{\mathrm{g}} 2 \mathrm{p}$, are nonorthogonal. ${ }^{36}$ Moreover, the best values of these coefficients are probably rather different for the π_{u} or π_{g} used in the CM terms (following α or β) in eq 7 than for those in the main MO terms. One must also not forget that the ζ values in eq 4 are different for π_{u} and π_{g}, and for the CM and main π_{u} and π_{g} 's. In spite of all these complications, the general trend of the simple reasoning in the text seems convincing as a qualitative explanation of the transition to an eq 11 type of wave function as R gets large.
(38) The extra terms in eq 12 correspond to the occurrence of $b \pi_{\mathrm{u}} 3 \mathrm{~d}$ in $1 \pi_{\mathrm{u}}$ (and of $a^{\prime} \pi_{g} 3 \mathrm{~d}$ in $1 \pi_{g}$) in eq 4 when substituted in eq 7. However, since b vanishes both as $R \rightarrow 0$ and $R \rightarrow \infty$ and so can never be very large, the related coefficients g and g^{\prime} (or rather, perhaps, their squares) in eq 12 should never be large.
(39) Cf. R. S. Mulliken, Phys. Rev., 120, 1674 (1960).

Table II. Dissociation Correlations for H_{2}

- - M MO state ${ }^{\text {a,b }}$ _		Rather large $R^{\text {c }}$	Very large R	Remarks ${ }^{\text {d }}$
Unpr	$1 \sigma_{\mathrm{g}^{2}}{ }^{1} \Sigma^{\mathbf{8}}{ }^{+}$	1 s .1 s	$1 \mathrm{~s} \cdot 1 \mathrm{~s}$	VS state
Partly Pr	$1 \sigma_{\mathrm{g}} \times 1 \sigma_{\mathrm{u}},{ }^{3} \Sigma_{\mathrm{u}}+$	($1 \mathrm{~s} \times 2 \mathrm{p} \sigma)_{\mathrm{u}}$ and esp. $(1 \mathrm{~s} \times 1 \mathrm{~s})$	$1 \mathrm{~s} \times 1 \mathrm{~s}$	Semi-Ry state
Partly Pr	$1 \sigma_{\mathrm{g}} \cdot 1 \sigma_{\mathrm{u}},{ }^{1} \Sigma_{\mathrm{u}}{ }^{+}$	$(1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma)_{u}$ and $\left(1 \mathrm{~s}^{2}\right)_{u}$	(1s.2p σ) ${ }_{\text {u }}$	Semi-Ry state ${ }^{\text {e },}$ t
Unpr	$1 \sigma_{\mathrm{g}} \times 2 \mathrm{~s},{ }^{3} \Sigma_{\mathrm{g}}+$	$(1 \mathrm{~s} \times 2 \mathrm{~s})_{\mathrm{g}}$ and $\left(1 \mathrm{~s} \times 2 \mathrm{di}^{\prime}\right)_{\mathrm{g}}$	$(1 \mathrm{~s} \times 2 \mathrm{p} \sigma)_{\mathrm{g}}$	g
Unpr	$1 \sigma_{\mathrm{g}} \cdot 2 \mathrm{~s},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$	$(1 \mathrm{~s} \cdot 2 \mathrm{~s})_{\mathrm{g}}$ and ($\left.1 \mathrm{~s} \cdot 2 \mathrm{di}^{\prime}\right)_{\mathrm{g}}$	$(1 \mathrm{~s} \cdot 2 \mathrm{~s})_{\mathrm{g}}$	g, h
Pr	$1 \sigma_{\mathrm{g}} \times 3 \mathrm{p} \sigma,{ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$	$(1 \mathrm{~s} \times 3 \mathrm{p} \sigma)_{u}$ and ($\left.1 \mathrm{~s} \times 2 \mathrm{di}^{\prime}\right)_{u}$	$(1 \mathrm{~s} \times 2 \mathrm{~s})_{u}$	
Pr	$1 \sigma_{\mathrm{g}} \cdot 3 \mathrm{p} \sigma,{ }^{1} \mathrm{\Sigma}_{\mathrm{u}}{ }^{+}$	$(1 \mathrm{~s} \cdot 3 \mathrm{p} \sigma)_{\mathrm{u}}$ and $\left.(1 \mathrm{~s} \cdot 2 \mathrm{di})^{\prime}\right)^{\prime}$	(1s.2s) ${ }_{\text {u }}$	e, f
Unpr	$1 \sigma_{8} 2 \mathrm{p} \pi,{ }^{1,3} \Pi_{u}$	(152p $)_{\text {u }}$	$(1 \mathrm{~s} 2 \mathrm{p} \pi)_{\mathrm{u}}$,
Pr	$1 \sigma_{\mathrm{g}} \times 3 \mathrm{~d} \sigma,{ }^{3} \Sigma_{\mathrm{z}}{ }^{+}$	$(1 \mathrm{~s} \times 3 \mathrm{~d} \sigma)_{\mathrm{g}}$ and $(1 \mathrm{~s} \times 2 \mathrm{di})_{\mathrm{g}}$	$(1 \mathrm{~s} \times 2 \mathrm{~s})_{8}$	j
Pr	$1 \sigma_{\mathrm{g}} \cdot 3 \mathrm{~d} \sigma,{ }^{1 \Sigma} \mathrm{~g}_{\mathrm{g}}{ }^{+}$	(15.3d $\sigma)_{\mathrm{g}}$ and (15.2di) ${ }_{\mathrm{g}}$	$(1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma)_{\mathrm{g}}$	j, k
Pr	$1 \sigma_{\mathrm{g}} 3 \mathrm{dd} \pi,{ }^{1,3} \mathrm{M}_{\mathrm{g}}$	(1s 3d $\pi)_{g}$ and ($\left.1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{\mathrm{g}}$	(1s2p $)^{\text {g }}$	i
Unpr	$1 \sigma_{8} 3 \mathrm{~d} \delta{ }^{1,3} \Delta_{g}$	(1s3d $\delta)_{\mathrm{g}}$	(1s3d $\delta)_{\mathrm{g}}$	
Pr	$1 \sigma_{\mathrm{g}} \times 4 \mathrm{f} \sigma,{ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$	$(1 \mathrm{~s} \times 4 \mathrm{f} \sigma)_{\mathrm{u}}$ and $(1 \mathrm{~s} \times 2 \mathrm{di})_{u}$	$(1 \mathrm{~s} \times 2 \mathrm{p} \sigma)_{\mathrm{u}}$	
Pr	$1 \sigma_{\mathrm{g}} \cdot 4 \mathrm{f} \sigma,{ }^{1} \mathrm{\Sigma}_{\mathrm{u}}{ }^{+}$	$(1 \mathrm{~s} \cdot 4 \mathrm{f} \sigma)_{\mathrm{u}}$ and $(1 \mathrm{~s} \cdot 2 \mathrm{di})_{\mathrm{u}}$	$(1 \mathrm{~s} \cdot 3 \mathrm{p} \sigma)_{\mathrm{u}}$	e

${ }^{a}$ Pr and Unpr refer to states with a promoted or unpromoted outer MO, respectively. For a promoted MO, the principal quantum number n for the UAO is larger than for the AO of the pseudo-correlated LCAO expression or, what is the same, for the outer AO of its LCAS dissociation product (see $\mathrm{V}, 1$ for definitions and discussion of promoted and unpromoted MO's in $\mathrm{H}_{2}{ }^{+}$). ${ }^{b}$ A UAO symbol is used for Rydberg MO's, since these at R_{e} are close to being UAO's. Singlet and triplet states are given separately in those cases where their asymptotes as $R \rightarrow \infty$ are different; otherwise they are given together. ${ }^{\circ}$ The first of the two LCAS functions listed in this column is that which is predominant at small R; the second is that predominant at large R. For unpromoted states which need two LCAS terms, these are partly identical. For example, in the $1 \sigma_{\mathrm{g}} 2 \mathrm{~s},{ }^{1,3} \Sigma_{\mathrm{g}}{ }^{+}$states (these are actually the only examples given in Table III; others would include $3 \mathrm{~s}, 2 \mathrm{p} \pi, 4 \mathrm{~d} \delta, \ldots$), the LCAS function $\left(1 \mathrm{~s} 2 \mathrm{di}^{\prime}\right)_{g}$ is the same as $2^{-1 / 2}\left[(1 \mathrm{~s} 2 \mathrm{~s})_{g}-(1 \mathrm{~s} 2 \mathrm{p} \sigma)_{g}\right]$ and so is partly identical with the $(1 \mathrm{~s} 2 \mathrm{~s})_{\mathrm{g}}$ term. The pair of LCAS functions is thus equivalent to the pair $(1 \mathrm{~s} 2 \mathrm{~s})_{g}$ and $(1 \mathrm{~s} 2 \mathrm{p} \sigma)_{\mathrm{g}}$, but with higher weight for the former and opposite signs for the two. For SAO's with $n>$ 2, increasingly complicated hybrids are needed for the large R LCAS function in this column. dVS means valence state. Ry means Rydberg. - The three ${ }^{1} \Sigma_{\mathrm{u}}+$ states which at small R are $1 \sigma_{\mathrm{g}} \cdot 1 \sigma_{\mathrm{g}}, 1 \sigma_{\mathrm{g}} \cdot 3 \mathrm{p} \sigma$, and $1 \sigma_{\mathrm{g}} \cdot 4 \mathrm{f} \sigma$ need to be considered together, since they become strongly mixed at large R values because of avoided crossings at about 10 au of the $(U) R$ curve of the $\mathrm{H}^{+} \mathrm{H}^{-}$APAS $\left(1 \mathrm{~s}^{2}\right)_{\mathrm{u}}$ function (which on the basis of the procedure outlined in the text should be the predominant component for the first-named of these three states) with the $U(R)$ curves of the $\left(1 \mathrm{~s} \cdot 2 \mathrm{di}^{\prime}\right)_{\mathrm{u}}$ and $(1 \mathrm{~s} \cdot 2 \mathrm{di})_{\mathrm{u}}$ functions, which should be the predominant components of the other two of the three states (see J. T. Lewis, Proc. Phys. Soc. (London), 68, 632 (1935), for relevant calculations on this mixing). If crossing could have occurred without mixing, the $1 \sigma_{\mathrm{g}}$. $1 \sigma_{u}$ curve would have dissociated smoothly following $\left(1 \mathrm{~s}^{2}\right)_{u}$ to H^{+}plus $\mathrm{H}^{-}\left(1 \mathrm{~s}^{2}\right)$, and the other two following ($\left.1 \mathrm{~s} \cdot 2 \mathrm{x}\right)_{\mathrm{u}}$ to $\mathrm{H}(1 \mathrm{~s})$ plus $\mathrm{H}(2 \mathrm{x})$, where x is 2 s for one and $2 \mathrm{p} \sigma$ for the other; if first-order dispersion terms (see text) had been absent, x would be $2 \mathrm{di}^{\prime}$ for $1 \sigma_{\mathrm{z}} \cdot 3 \mathrm{p} \sigma$ and 2 di for $1 \sigma_{\mathrm{g}} \cdot 4 \mathrm{f} \sigma$, but because these terms are present and cause ($\left.1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma\right)_{\mathrm{u}}$ to be lower in energy than ($\left.1 \mathrm{~s} \cdot 2 \mathrm{~s}\right)_{\mathrm{u}}$ at very large R (see ref 54), x would have to be $2 \mathrm{p} \sigma$ for $1 \sigma_{\mathrm{g}} \cdot 3 \mathrm{p} \sigma$ and 2 s for $1 \sigma_{\mathrm{g}} \cdot 4 \mathrm{f} \sigma$. But since actually there is avoided crossing accompanied by profound mixing (see Lewis, above), the $1 \sigma_{\mathrm{g}} \cdot 1 \sigma_{\mathrm{u}} U(R)$ curve beyond the crossing point (that is, for $R>10 \mathrm{au}$) must go to dissociation via the $1 \sigma_{\mathrm{g}} \cdot 3 \mathrm{p} \sigma$ asymptote, namely $\left(1 \mathrm{~s} \cdot 2 \mathrm{di}^{\prime}\right)_{\mathrm{u}}$ at large R, going over to ($\left.1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma\right)_{\mathrm{u}}$ at very large R. This forces the $1 \sigma_{\mathrm{g}} \cdot 3 \mathrm{p} \sigma$ curve to take over the asymptotic behavior properly belonging to the $1 \sigma_{\mathrm{g}} \cdot 4 \mathrm{f} \sigma$ curve, namely, ($\left.1 \mathrm{~s} \cdot 2 \mathrm{di}\right)_{\mathrm{u}}$ at large R going over to $(1 \mathrm{~s} \cdot 2 \mathrm{~s})_{\mathrm{u}}$ at very large R. Finally, the $1 \sigma_{\mathrm{g}} \cdot 4 \mathrm{f} \sigma$ curve, after coming down toward its proper asymptote, is forced to start up again, following the $\left(1 \mathrm{~s}^{2}\right)_{\mathrm{u}}$ ion-pair curve; however, further mixing with 3-quantum ${ }^{1} \Sigma_{\mathrm{u}}{ }^{+}$LCAS functions will permit it to dissociate at that level, probably to ($\left.1 \mathrm{~s} \cdot 3 \mathrm{~d} \sigma\right)_{\mathrm{u}}{ }^{\prime} \quad$ ' Experimentally (T. Namioka, J. Chem. Phys., 43, $1636(1965)$), the $1 \sigma_{\mathrm{g}} \cdot 1 \sigma_{u} U(R)$ curve goes smoothly toward dissociation at the 2 -quantum level, as would be expected from the discussion in footnote e, while the $1 \sigma_{\mathrm{g}} \cdot 3 \mathrm{p} \sigma$ curve shows a normal shape near R_{e} but at larger R goes abnormally slowly toward dissociation at the 3quantum level. This somewhat peculiar behavior of the $1 \sigma_{\mathrm{g}} \cdot 3 \mathrm{p} \sigma$ curve is consistent with the discussion in footnote e. (The analogous $1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} \cdot 3 \mathrm{p} \sigma$ curve of $\mathrm{He} \mathrm{e}_{\mathrm{z}}$ has a maximum at moderately large R; see below). The nature of the wave function of the $1 \sigma_{\mathrm{g}} \cdot 1 \sigma_{\mathrm{u}}$ state as a function of R has been extensively discussed in the literature on the basis of approximate theoretical calculations (see C. S. Tschudi and N. V. Cohan, ibid., 34, 401 (1961); A. Batana and N. V. Cohan, Mol. Phys., 7, 97 (1963); P. Phillipson and R. S. Mulliken, J. Chem. Phys., 33, 615 (1960), and earlier references given in these papers). A very recent, not yet published, very accurate James-Coolidge type calculation of the potential curve out to 12 au by W. Kolos now permits definite conclusions. A decomposition by Kolos (private communication) of his wave function into a linear combination, $c_{1}(1 \mathrm{~s} \cdot 2 \mathrm{~s})_{\mathrm{u}}+c_{2}(1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma)_{\mathrm{u}}+c_{3}\left(1 \mathrm{~s}^{2}\right)_{\mathrm{u}}$, of three nonorthogonal APAS functions plus an orthogonal residue Ω, where 2 s and $2 \mathrm{p} \sigma$ are free H -atom AO's $\left(Z=1 \text {) while } 1 \mathrm{~s} \text { in }\left(1 \mathrm{~s}^{2}\right)_{\mathrm{u}} \text { is an approximate } \mathrm{H}^{-} \text {ion } \mathrm{AO}(Z \approx 0.7) \text {, shows (} 1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma\right)_{\mathrm{u}}$ strongly predominant at small R values, as expected, and $\left(1 s^{2}\right)_{u}$ predominant from about 3 to 6 au , again in agreement with expectations from Table III. The component ($1 \mathrm{~s} \cdot 2 \mathrm{~s}$) is minor until large R values; its coefficient c_{1} is opposite in sign to c_{2} suggesting that the above linear combination be rewritten as $c_{1}{ }^{\prime}\left(1 \mathrm{~s} \cdot 2 \mathrm{di}^{\prime}\right)_{\mathrm{u}}+c_{2}{ }^{\prime}(1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma)_{\mathrm{u}}+c_{3}{ }^{\prime}\left(1 \mathrm{~s}^{2}\right)_{\mathrm{u}}+\Omega$. Between 10 and $12 \mathrm{au}, c_{\mathrm{s}}{ }^{\prime}$ falls rapidly, while $c_{2}{ }^{\prime}$ and $-c_{1}{ }^{\prime}$ rise. At $12 \mathrm{au}-c_{1}{ }^{\prime}>c_{3}{ }^{\prime}>c_{2}{ }^{\prime}$ (or in terms of the c^{\prime} s, $c_{2}>-c_{1}>c_{3}$), in agreement with the expectations of Table III and footnote e, namely, ($\left.1 \mathrm{~s} \cdot 2 \mathrm{di}^{\prime}\right)_{\mathrm{u}}$ predominant at large R beyond the point of avoided crossing with $\left(1 \mathrm{~s}^{2}\right)_{\mathrm{u}}$ near 10 au, but finally giving way to $(1 \mathrm{~s} \cdot 2 \mathrm{p} \sigma)_{\mathrm{u}}$ at very large R because of the first-order dispersion effect. ©See comments in footnote c. h See discussion in section 3 (and $c f$. ref 14) on the two avoided crossings, one at rather small R, one near 10 au, both by the $\mathrm{H}^{+} \mathrm{H}^{-}$state $1 \sigma_{\mathrm{u}}{ }^{2},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$(MO description) or (1s $\left.\mathrm{s}^{2}\right)_{\mathrm{g}}$ (APAS description). At large R well beyond 10 au, these disturbances should have subsided. ${ }^{i}$ See comments in section 3 on London dispersion effects on the shape of the ${ }^{1} \Pi U(R)$ curve at large R. ${ }^{i}$ Crossing with $1 \sigma_{\mathrm{g}} 3 \mathrm{~s}$ occurs close to R_{e} for the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$and at somewhat smaller R for the ${ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$, but interaction is weak (see section 3 and ref 12 , also section 4 and ref 20). ${ }^{k}$ Avoided-crossing interaction with $1 \sigma_{\mathrm{u}}{ }^{2}$ at rather small R and again at large R (hence, indirectly also with $1 \sigma_{\mathrm{g}} \cdot 2 \mathrm{~s}$) must cause complications similar to those in $1 \sigma_{\mathrm{g}} \cdot 2 \mathrm{~s}$ (see footnote h).
cally to a single pure l LCAS function; such asymptotes, making use of the noncrossing rule and theoretically calculated first-order dispersion energies, are listed for "Very large R " in Table II.

For He_{2}, dissociation relations similar to those for H_{2} exist for the Rydberg states, ${ }^{3,4}$ except that the complications which occur for the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$and ${ }^{1} \Sigma_{\mathrm{u}}+$ states of H_{2} due to avoided crossings with $\mathrm{H}^{+} \mathrm{H}^{-}\left(1 \mathrm{~s}^{2}\right)_{g}$ and $\left(1 \mathrm{~s}^{2}\right)_{u}$ curves have no counterpart for He_{2}. A table analogous to Table II for H_{2} can be constructed by the same kind
of procedure used there to go over from MO functions at small R to (usually double) LCAS functions at rather large R and single LCAS functions at large R. The procedure is simpler for He_{2} because first-order dispersion effects (although not absent for some states) are not needed as in H_{2} to carry over hybrid AO into pure l functions as $R \rightarrow \infty$.

As an example, the MO states $1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 1 \pi_{\mathrm{u}},{ }^{1,3} \Pi_{\mathrm{g}}$ and $1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathfrak{u}} 1 \pi_{\mathrm{g}},{ }^{1,3} \Pi_{\mathfrak{u}}$ must respectively mix, on the way to dissociation, with $1 \sigma_{\mathrm{g}} 1 \sigma_{\mathrm{u}}{ }^{2} 1 \pi_{\mathrm{g}},{ }^{1,3} \Pi_{\mathrm{g}}$ and $1 \sigma_{\mathrm{g}^{-}}$

Table III. Dissociation Correlations for He_{2}

MO state	Rather large $R \quad$ Large R	
$1 \sigma_{8}{ }^{2} 1$	$1 \mathrm{~s}^{2} 1 \mathrm{~s}^{2}$	
$1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 2 \mathrm{ss},{ }^{1,3} \Sigma_{\mathrm{u}}+$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{~s}\right)_{\mathrm{u}}$ and $\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{di}\right)^{\prime}$	($\left.1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{~s}\right)_{\mathrm{u}}$
$1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 2 \mathrm{p} \pi \mathrm{r}^{1,3} \pi_{\mathrm{g}}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{\mathrm{g}}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{\mathrm{g}}$
$1 \sigma_{\mathrm{g}}{ }^{2} \sigma_{\mathrm{u}} 3 \mathrm{p} \boldsymbol{\sigma} \mathrm{F}^{1,3} \mathrm{~S}_{\mathbf{g}}{ }^{+}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 3 \mathrm{p} \sigma\right)_{\mathrm{g}}$ and ($\left.1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{di}\right)_{\mathrm{g}}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{~s}\right)_{\mathrm{g}}$
$1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 3 \mathrm{~d} \sigma,{ }^{1,3} \Sigma_{\mathrm{u}}{ }^{+}$	($\left.1 \mathrm{~s}^{2} 1 \mathrm{~s} 3 \mathrm{~d} \sigma\right)_{\mathrm{u}}$ and ($\left.1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{di}\right)_{u}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \sigma\right)_{\mathrm{u}}$
$1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 3 \mathrm{~d} \pi,^{1,3} \Pi_{\mathrm{u}}$	$\left(1 s^{2} 1 \mathrm{~s} 3 \mathrm{~d} \pi\right)_{u}$ and ($\left.1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{u}$	($1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \pi$) ${ }^{\text {d }}$
$1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 3 \mathrm{~d} \delta^{1}{ }^{1,3} \Delta_{\mathrm{u}}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 3 \mathrm{~d} \delta\right)_{\mathrm{u}}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 3 \mathrm{~d} \delta\right)_{\mathrm{u}}$
$1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 4 \mathrm{f} \sigma,{ }^{1,3} \Sigma_{\mathrm{s}}{ }^{+}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 4 \mathrm{f} \sigma\right)_{\mathrm{g}}$ and $\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{di}\right)_{\mathrm{g}}$	$\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \sigma\right)_{\mathrm{g}}$

${ }^{a}$ In those cases where an LCAS form with a hybrid AO is indicated at intermediate R, the hybrid AO is doubtless not the ideal 50:50 hybrid indicated (or with other ideal ratios for LCAS's with hybrid AO's with $n>2$), but rather should be weighted toward the AO which is alone present as $R \rightarrow \infty$. However, earlier calculations by Browne ${ }^{\text {ta }}$ on the Σ states are in agreement with the conclusion reached here that hybrid-AO LCAS's are needed.
additional LCAS states in which $3 \mathrm{~d} \pi$ is substituted for $2 \mathrm{p} \pi$. Table III summarizes the dissociation correlations which one arrives at for these II and other states of He_{2}.

It is of interest now to review what is known of the dissociation energies D_{0}, and the heights of the dissociation maxima in those cases where they occur, for the molecules H_{2} and He_{2}. This is done in Table IV, which shows approximate theoretical values for the heights (H) of the maxima above the lowest vibrational level $(v=0)$ of each state and then (h) above the energy of the dissociated atoms; in the absence of a maximum, $H=D_{0}$ and $R=0$. In a few cases the values of D_{0} are notably small, thus (in view of evidence of normal $U(R)$ shape near R_{e}) pointing most strongly toward the existence of a maximum. For the $3 p \sigma,{ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$state of

Table IV. Maxima and Minima in H_{2} and He_{2} Rydberg-State Potential Curves

State	H	$\longrightarrow-\mathrm{H}_{2}$ energies, $\mathrm{ev}^{\text {a }}$		[-_He He_{2} energies, $\mathrm{ev}^{\text {b }}$			
$3 \mathrm{~d} \hat{\text {, }}{ }^{1} \Delta_{\mathrm{g}}$	2.50	0	2.50 (3d δ)	${ }^{1} \Delta_{u}$	2.18	0	2.18 (3d δ)
$3 \mathrm{~d} \pi,{ }^{1} \Pi_{\mathrm{g}}$	(0.96)	(0.3) ${ }^{\text {c }}$	0.66 (2pm)	${ }^{1} \Pi_{u}$	(0.67)	(0.3)	0.37 (2p π)
$3 \mathrm{~d} \sigma,{ }^{15} \Sigma^{\text {g }}$	(0.98)	(0.3) ${ }^{\text {c }}$	0.68 (2p σ)	${ }^{15} \Sigma^{+}$	[0.7?]	[0.3?]	0.39 (2p σ)
$3 \mathrm{p} \pi$, ${ }^{1} \Pi_{\mathrm{u}}$	2.44	0	2.44 (3d π)	${ }^{1} \mathrm{IIg}_{\mathrm{g}}$	2.25	0	2.25 (3p π)
$3 \mathrm{~s},{ }^{1} \mathrm{\Sigma g}^{\text {g }}$	2.43	0	2.43 (3 σ)	${ }^{1} \Sigma_{u}+$	2.18	0	2.18 (3s)
$3 \mathrm{p} \sigma,{ }^{1} \Sigma_{\mathrm{u}}+$	0.90	$0^{\text {d }}$	0.90 (2s)	${ }^{15} \Sigma_{8}{ }^{+}$	$(1.4)^{h}$	$(0.5)^{h}$	0.84 (2s)
$2 \mathrm{p} \pi,{ }^{1} \Pi_{\mathrm{u}}$	2.26	0	2. 26 (2p π)	${ }^{1} \Pi_{15}$	2.35	0	2.35 (2pr)
$2 \mathrm{~s},{ }^{1} \mathrm{\Sigma g}_{\mathrm{g}}{ }^{+}$	2.25	0	2.25 (2s)	${ }^{1} \Sigma_{\mathrm{u}}{ }^{+}$	2.19	0.17^{i}	2.19 (2s)
$3 \mathrm{~d} \delta,{ }^{3}{ }_{\mathrm{g}}$	2.53	0	2.53 (3d δ)	${ }^{3} \Delta_{u}$	2.19	0	2.19 (3d δ)
$3 \mathrm{~d} \pi$, ${ }^{3} \mathrm{I}_{\mathrm{g}}$	1.07	$0.41{ }^{\text {e }}$	0.66 ($2 \mathrm{p} \pi$)	${ }^{3} \Pi_{u}$	(0.48)	(0.35) ${ }^{\text {f }}$	0.13 (2pr)
$3 \mathrm{~d} \sigma,{ }^{3} \mathrm{\Sigma}_{\mathrm{g}}{ }^{+}$	1.10	$0.41{ }^{\text {e }}$	0.69 (2s)	${ }^{3} \mathrm{\Sigma}_{\mathrm{u}}+$	[0.5?]	[0.35?] ${ }^{\text {a }}$	0.16 (2p σ)
$3 \mathrm{p} \pi,{ }^{3} \Pi_{\mathrm{u}}$	2.59	0	2.59 (3p π)	${ }^{3} \mathrm{H}_{8}$	2.21	0	2.21 (3p π)
$3 \mathrm{~s},{ }^{3} \mathrm{\Sigma}_{\mathrm{z}}{ }^{+}$	2.58	0	2.58 (3p σ)	${ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$	2.06	0	2.06 (3s)
$3 \mathrm{p} \sigma,{ }^{3}{ }_{\mathrm{u}}{ }^{+}$	1.32	0	1.32 (2s)	${ }^{3} \Sigma^{\text {g }}{ }^{+}$	$(1.0)^{h}$	$(0.6)^{h}$	0.34 (2s)
$2 \mathrm{p} \pi,{ }^{3} \mathrm{I}_{\mathrm{u}}$	2.79	0	2.79 (2p π)	${ }^{3} \Pi_{8}$	2.24	0	2.24 (2p π)
$2 \mathrm{~s},{ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$	2.76	0	2.76 (2p σ)	${ }^{3} \Sigma_{u}{ }^{+}$	1.69	$0.14{ }^{i}$	1.69 (2s)

${ }^{a}$ The D_{0} values (energies of dissociation from the $v=0$ vibrational level) are based on the theoretically known D_{0} of $\mathrm{H}_{2}+(2.648 \mathrm{ev}$), together with the known excitation energies T_{0} of the $v=0$ levels of the various states, and the assumption of dissociation in accordance with the noncrossing rule, except that crossing of $3 \mathrm{~s},{ }^{3} \Sigma_{\mathrm{g}}+$ and $3 \mathrm{~d} \sigma,{ }^{3} \Sigma_{\mathrm{g}}+$ is assumed to occur so that the former dissociates to give one $n=2$ and the latter to give one $n=3 \mathrm{H}$ atom. The T_{0} values are mainly those given in Herzberg's book on diatomic molecules, with some updating. The h and H values are the heights of the maxima (if any) of the potential curves above, respectively, the dissociation asymptotes and the v $=0$ levels of the states. ${ }^{b}$ The statements in footnote a also apply here, except for the value of D_{0} of $^{\mathrm{He}}{ }_{2}{ }^{+}$. Although this is not known exactly, the value 2.20 ev has been used here. This is the best present estimate, based on the rather accurate theoretical calculations of P. A. Reagan, J. C. Browne, and F. A. Matsen, Phys. Rev., 132, 304 (1963), who find 2.24 ev as a lower limit for D_{e}, from which J. C. Browne (private communication) estimates that D_{e} is close to 2.30 ev . For $D_{\mathrm{e}}=2.30 \mathrm{ev}, D_{0}$ is 2.20 ev . ${ }^{c}$ For $3 \mathrm{~d} \pi^{1} \Pi_{\mathrm{g}}$, Browne's ${ }^{4 b}$ theoretical calculations gave $h=0.451 \mathrm{ev}$. Assuming this value to be too large by 0.15 ev ($c f$. footnote e), 0.3 ev as given above is obtained. Then assuming equality of h for $3 \mathrm{~d} \sigma$ and $3 \mathrm{~d} \pi$ to exist as has been shown for the triplet states, the estimated value of 0.3 ev for $3 \mathrm{~d} \sigma,{ }_{\mathrm{g}}{ }_{\mathrm{g}}+$ is obtained. ${ }^{d}$ From experimental determination of the potential curve; T. Namioka, J. Chem. Phys., 43, 1636 (1965). The curve has an abnormal shape, but unlike its counterpart in He_{2} has no maximum. ${ }^{\text {e }}$ From the accurate theoretical calculations of ref 5 . In the case of $3 \mathrm{~d} \sigma,{ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$, crossing of $3 \mathrm{~s} \sigma$ and $3 \mathrm{~d} \sigma$ is here assumed. ${ }^{12}$ For $3 \mathrm{~d} \pi,{ }^{3} \Pi_{\mathrm{g}}$, Browne, in a less accurate calculation, ${ }^{4 \mathrm{~b}}$ found $h=0.55 \mathrm{ev}, 0.15$ ev larger than by ref 5 a . ${ }^{f}$ From theoretical calculations of ref $4 \mathrm{~b},{ }^{1} \Pi_{u}$ has a maximum of height 0.46 ev and ${ }^{3} \Pi_{u}$ of 0.60 ev . Subtracting 0.15 from each (cf. footnotes c and e), the estimated values given above are obtained. "There seems little doubt that maxima occur in these cases ${ }^{3}$ as in all the other analogous cases where computations have been made. ${ }^{h}$ Approximate theoretical calculations by Browne ${ }^{4 \mathrm{~g}}$ gave $h=0.7 \mathrm{ev}$ for $3 \mathrm{p} \sigma,{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$and 0.8 ev for ${ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$. These are probably ($c f$. footnote e) too large, and an estimated allowance for this gives the values listed in the table. Vibrational levels of the $3 \mathrm{p} \sigma,{ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$state up to $0.58 \mathrm{ev}(v=4)$ and for the $3 \mathrm{p} \sigma,{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$up to $0.86 \mathrm{ev}(v=5)$ have been observed experimentally by M. L. Ginter [J. Chem. Phys., 42, 561 (1965)], and the observed levels in each case extrapolate to convergence at an H value near that given in parentheses in Table I. ${ }^{i}$ These theoretically computed maxima (R. D. Poshusta and F. A. Matsen, Phys. Rev., 132, 307 (1963) for the ${ }^{3} \Sigma_{\mathrm{z}}{ }^{+}$and ref 4 a for the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$), supported also by experimental evidence, are of an unexplained type unless perhaps the requirement that Ψ include an LCAS with $\mathrm{di}^{\prime} \mathrm{AO}$ at intermediate R values, as compared with 2 s at large R values ($c f$. Table III), somehow introduces repulsion at large R values.
$1 \sigma_{u}{ }^{2} 1 \pi_{u},{ }^{1,3} \Pi_{u}$ (each $1 \pi_{g}$ having an LCAO form which changes, as R increases, from mainly $\pi_{g} 3 \mathrm{~d}$ to mainly $\pi_{\mathrm{g}} 2 \mathrm{p}$), in order to dissociate into the corresponding ${ }^{1,3} \Pi_{\mathrm{g}, \mathrm{u}}$ LCAS states (briefly symbolized, $1 \mathrm{~s}_{\mathrm{a}}{ }^{2} 1 \mathrm{~s}_{\mathrm{b}} 2 \mathrm{p} \pi_{\mathrm{b}}$ $\pm 1 \mathrm{~s}_{\mathrm{b}}{ }^{2} 1 \mathrm{~s}_{\mathrm{a}} 2 \mathrm{p} \pi_{\mathrm{a}}$ with + for Π_{g} and - for Π_{u}, respectively). Or, conversely, in order to obtain the abovementioned MO states, the LCAS states just mentioned must mix with corresponding virtual $\mathrm{He}^{+} \mathrm{He}^{-}$states (briefly symbolized, $1 \mathrm{~s}_{\mathrm{a}} 1 \mathrm{~s}_{\mathrm{b}}{ }^{2} 2 \mathrm{p} \pi_{\mathrm{b}} \pm 1 \mathrm{~s}_{\mathrm{b}} 1 \mathrm{~s}_{\mathrm{a}}{ }^{2} 2 \mathrm{p} \pi_{\mathrm{a}}$, ${ }^{1,3} \Pi_{\mathrm{g}, \mathrm{u}}$), and in the case of the ${ }^{1,3} \Pi_{u}$ states also with
He_{2}, Ginter has observed actual vibrational levels up to 0.58 ev above the $v=0$ level, hence 0.22 ev above the dissociation asymptote if the value $D_{0}=2.20 \mathrm{ev}$ for $\mathrm{He}_{2}{ }^{+}$is correct; the observed vibrational levels, moreover, converge toward an H value of 1.0 ev in agreement with the approximate theoretical value (cf. footnote h in Table IV).

In the event of an avoided crossing ($c f$. section 3) of an attractive and a repulsive potential curve of the same electronic species, a maximum occurs in the lower of the
two resultant curves. In the case of the promoted states in eq 11 and Tables II and III one can, if one wishes, attribute the potential maxima described in earlier paragraphs to avoided crossings between repulsive and attractive LCAS potential curves. For example, for H_{2} one has a strongly repulsive LCAS curve for $(1 \mathrm{~s} \cdot 2 \mathrm{p} \pi)_{\mathrm{g}}$ of eq 11 and a corresponding presumably moderately attractive curve for ($1 \mathrm{~s} \cdot 3 \mathrm{~d} \pi)_{\mathrm{g}}$, and similarly for the analogous triplet H_{2} and the corresponding singlet and triplet He_{2} curves. ${ }^{40}$ Thus for H_{2} or He_{2}, avoided crossings of the separate potential curves of the two LCAS states, ${ }^{36}$ which are required for the cases which correspond at small R to promoted Rydberg MO's, can be held responsible for the potential maxima in these cases. ${ }^{41}$ Here the
(40) An interesting minor point, however, is that the $\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \sigma\right)_{\mathrm{u}}$ and probably the $\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 3 \mathrm{~d} \pi\right)_{\mathrm{g}} \mathrm{He}_{2}$ attractive curves are at first (at large R values) repulsive (cf, ref 4a), and become attractive only at smaller R values. This behavior can be correlated phenomenologically with the fact that the overlap integral S changes sign as R decreases in the cases of $S\left(2 \mathrm{p} \sigma_{\mathrm{s}}, 2 \mathrm{p} \sigma_{\mathrm{b}}\right)$ and $S\left(3 \mathrm{~d} \pi_{\mathrm{a}}, 3 \mathrm{~d} \pi_{\mathrm{b}}\right)$; the MO's $\sigma_{\mathrm{u}} 2 \mathrm{p}$ and $\pi_{\mathrm{g}} 3 \mathrm{~d}$ involve negative overlap and so are antibonding at large R but attain positive overlap at smaller R, with $S=1$ at $R=0$. It is also of interest that the overlap for $\sigma_{\mathrm{g}} 3 \mathrm{~d}$ has positive maxima both at large R values and $(S=$ 1) at $R=0$, but is smaller and even becomes slightly negative between, according to unpublished calculations by Dr. S.-I. Kwun in this laboratory.
(41) On the other hand, reference to Figure 1 of ref 3 for He_{2} might suggest that repulsive LCAS's such as $\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{~s}\right)_{g}$ and $\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{\mathrm{u}}$, taken alone, tend to go, as R decreases, into MO states with repulsive cores but unpromoted Rydberg MO's ($1 \sigma_{\mathrm{g}} 1 \sigma_{\mathrm{u}} 22 \mathrm{~s}$ and $1 \sigma_{\mathrm{g}} 1 \sigma_{\mathrm{u}}{ }^{23 \mathrm{~d}} \pi$, respectively), whereas the corresponding attractive LCAS's $\left(1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{~s}\right)_{\mathrm{u}}$ and ($\left.1 \mathrm{~s}^{2} 1 \mathrm{~s} 2 \mathrm{p} \pi\right)_{\mathrm{g}}$ definitely correlate with MO states with attractive cores and the same
ionic components which need to be admixed into the LCAS wave functions as R decreases are being ignored, but (as was pointed out above) because of a lack of orthogonality of the ionic and covalent wave functions the presence or absence of these ionic admixings does not change the qualitative characteristics of the potential curves.

The discussion in this section has shown that, for states which are Rydberg states near R_{e}, it is incorrect because of strong CM at large R values to think of the core and the Rydberg electron as following independent correlation curves as $R \rightarrow \infty$. However, there is no reason why these states need be thought of as ceasing to be Rydberg states at larger R values. Further, although a T and n^{*} value associated with a specific Rydberg MO lack meaning at large R values, an ionization energy can be defined at every R value. At intermediate R values, ionization involves a considerable internal rearrangement of structure which leaves the positive ion the same as if an electron had merely been removed from a nonbonding Rydberg MO, while as $R \rightarrow \infty$, the ionization energy becomes equal to the T for the excited atom in an LCAS function; these relations correspond to the pseudo-correlation of section 4.
unpromoted Rydberg MO's ($1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 2 \mathrm{~s}$ and $1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}} 2 \mathrm{p} \pi$). There seems to be no theoretical reason for such correlations for the repulsive single LCAS Ψ 's, and the explanation given in the text appears much more satisfactory.

Electric Moments and Internuclear Distances in Molecules Containing Both Fixed and Rotating Polar Groups

Theodore S. Gilman
Contribution from the Department of Chemistry, University of Colorado, Boulder, Colorado. Received July 6, 1965

Abstract

Equations are derived which give the components of a rotating vector in terms of the components of its axis of rotation, the angle between the axis and the rotating vector, and the angle of rotation. It is shown how these equations can be used to calculate the electric moments of molecules with rigid frameworks to which fixed and/or rotating polar groups are attached, for which the skeletal coordinates and angles are known or can be inferred, and in which either free rotation or certain conformations of a rotatable group are assumed. An expression is derived for the calculation of the distance between an atom in a rotatable group and some vicinal fixed atom. Examples of the use of the various expressions derived are given. It is concluded that dipole moment data may be helpful in providing evidence for the absence, but not for the presence, of free rotation in the types of molecules for which the relationships given are applicable.

In the investigation of reaction mechanisms, problems regarding the configurations of fairly large molecules with rigid frameworks are often encountered. Electric moment data have proved to be helpful in the solution of these problems in many instances. ${ }^{1-7}$ For

[^9]simple molecules, they are often sufficient for immediate structural assignments, but as the molecular complexity increases, it often becomes necessary to use geometrical models from which theoretical moments are calculated in order to determine which particular configurations are consistent with the experimentally determined moments.

A systematic approach to the calculation of theoretical moments from assumed models for several bicyclic
(6) R. Riemschneider and W. Wucherpfennig, Z. Naturforsch., 17b, 725 (1962).
(7) D. D. Tanner and T. S. Gilman, J. Am. Chem. Soc., 85, 2892 (1963).

[^0]: (6) Cf. R. S. Mulliken, Rev. Mod. Phys., 4, 40 (1932).
 (7) Exceptions in which only minor MO-CM is needed at all R values will be discussed in section 4 .
 (8) In connection with his 'atoms-in-molecules' method, W. Moffitt, Proc. Roy. Soc. (London), A210, 245 (1951), introduced the term "composite (atomic) function" for what is called here an APAS function. However, there seems to be a need for a more explicitly descriptive symbol, especially since we usually need to deal with linear combinations of APAS's.

[^1]: (9) Symbols like 1s $\cdot 1 \mathrm{~s}$ and $1 \mathrm{~s} \times 1 \mathrm{~s}$ will be used in this paper for LCAS singlet and triplet states, respectively. Similarly for a single atom, symbols like $1 \mathrm{~s} \cdot 1 \mathrm{~s}$ and $1 \mathrm{~s} \times 2 \mathrm{~s}$ for the $1 \mathrm{~s} 2 \mathrm{~s}, 1 \mathrm{~S}$ and 1 s 2 s , ${ }^{3} \mathrm{~S}$ states of the He atom will be used.
 (10) R. S. Mulliken in "Quantum Theory of Atoms, Molecules, and the Solid State," P. O. Löwdin, Ed., Academic Press Inc., New York, N. Y., 1966.

[^2]: (11) Cf. K. Dressler and E. Miescher, Astrophys. J., 141, 1266 (1965).
 (12) See ref 5 b . The authors (cf. their Figure 1) treat this case as that of an avoided crossing. From the homogeneous perturbation viewpoint, however, the 3 s and $3 \mathrm{~d} \sigma$ curves should be allowed to cross in their Figure 1. The 3d σ curve then goes over a hump 0.41 ev above the asymptote, toward a dissociation asymptote with one 2 -quantum H atom, while the 3 s curve goes, without a hump, to an asymptote with a 3-quantum atom.
 (13) Cf. R. S. Mulliken, "'The Threshold of Space," Pergamon Press, New York, N. Y., 1957, p 177, note on states 180 and 183. For another example of crossing in N_{2}, but belonging to the homogeneous perturbation type, see P. K. Carroll and R. S. Mulliken, J. Chem. Phys., 43, 2170 (1965).
 (14) (a) Cf. E. R. Davidson, ibid., 35, 1189 (1961); (b) G. H. Dieke and S. P. Cunningham, J. Mol. Spectry., 18, 288 (1965). This paper tends to suggest that the homogeneous perturbation viewpoint may be more appropriate even here than the avoided crossing viewpoint.

[^3]: (15) Here the R value (R_{c}) at crossing is sometimes so large and the interaction matrix element so small that homogeneous perturbation instead of an avoided crossing occurs (see R. S. Berry, J. Chem. Phys., 27, 1288 (1957)).
 (16) As an example, very accurate calculations by W. Kolos and L. Wolniewicz, ibid., 43, 2429 (1965), show a van der Waals minimum of depth $4.3 \mathrm{~cm}^{-1}$ at 4.15 A in the $1 \mathrm{~s} \times 1 \mathrm{~s},{ }^{3} \Sigma_{\mathrm{u}^{+}}$repulsion state of H_{2}.

[^4]: (20) See the discussion on homogeneous perturbations near the beginning of section 3 , including ref 12 , and also especially the next-tolast paragraph of the first subsection of section 3. Strictly speaking, it is not the 3 s and $3 \mathrm{~d} \sigma$ MOs' of H_{2} whose curves cross, but only the $U(\mathrm{R})$ curves of the $1 \sigma_{\mathrm{g}} 3 \mathrm{~s}$ and $1 \sigma_{\mathrm{g}} 3 \mathrm{~d} \sigma,{ }^{3} \Sigma_{\mathrm{g}}+$ states, and (at a somewhat different R) of the corresponding ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$states.

[^5]: (21) See forthcoming paper by G. Das of this laboratory and A. C.

[^6]: (25) For He_{2} at very small R, however, there is major CM near a crossing of $1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}}{ }^{2}$ (approximately $1 \mathrm{~s}^{2} 2 \mathrm{p} \sigma^{2}$) by $1 \sigma_{\mathrm{g}}{ }^{2} 2 \sigma_{\mathrm{g}}{ }^{2}$ (approximately $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$).

[^7]: (26) At R_{e} the SCF MO's $2 \sigma_{\mathrm{g}}$ and $2 \sigma_{\mathrm{u}}$ deviate greatly from the simple forms $\sigma_{\mathrm{g}} 2 \mathrm{~s}$ and $\sigma_{\mathrm{u}} 2 \mathrm{~s}$ with 2 s of N atom SCF form, but as $R \rightarrow \infty$ they must approach $2^{-1 / 2}\left(2 \mathrm{~s}_{\mathrm{a}} \pm 2 \mathrm{~s}_{\mathrm{b}}\right)$ with 2 s forms the same and T values nearly the same as for free-atom 2s SCF AO's (cf. the discussion of He_{2} above).
 (27) (a) See R. S. Mulliken, J. Chem. Phys., 36, 3428 (1962), section II, 1-3; ibid., 43, S39 (1965). (b) Recent calculations by S-I. Kwun in this laboratory indicate, however, that at intermediate R values the UAO or MUAO approximation remains rather good when the LCUAO or LCMUAO fails badly, while the LCMAO also is good.

[^8]: (36) When recognizing the nonorthogonality of corresponding LCAS and ionic terms except as $R \rightarrow \infty$, it is desirable to point out that the LCAS forms ($1 \mathrm{~s} 2 \mathrm{p} \pi)_{g}$ and ($\left.1 \mathrm{~s} 3 \mathrm{~d} \pi\right)_{g}$ used in eq 11 also are nonorthogonal except as $R \rightarrow \infty$; likewise that the LCAO forms $\pi_{\mathrm{g}} 3 \mathrm{~d}$ and $\pi_{\mathrm{g}} 2 \mathrm{p}$ (likewise $\pi_{\mathrm{u}} 3 \mathrm{~d}$ and $\pi_{\mathrm{u}} 2 \mathrm{p}$) in eq 4 are nonorthogonal except as $R \rightarrow \infty$; similarly $(1 \mathrm{~s} 2 \mathrm{~s})_{\mathrm{g}}$ and $(1 \mathrm{~s} 2 \mathrm{p} \sigma)_{g}$, and $(1 \mathrm{~s} 2 \mathrm{~s})_{\mathrm{u}}$ and $(1 \mathrm{~s} 2 \mathrm{p} \sigma)_{\mathrm{u}}$.

[^9]: (1) H. Kwart and L. Kaplan, J. Am. Chem. Soc., 75, 3356 (1953); 76, 4072 (1954).
 (2) J. D. Roberts, F. O. Johnson, and R. A. Carboni, ibid., 76, 5692 (1954).
 (3) M. T. Rogers and S. J. Cristol, ibid., 77, 764 (1955).
 (4) (a) H. Krieger, Suomen Kemistilehti, B31, 348 (1958); (b) ibid., B32, 109 (1959).
 (5) N. L. Allinger, J. Allinger, and N. A. LeBel, J. Am. Chem. Soc., 82, 2926 (1960).

