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Abstract: The ways in which the electronic wave functions of diatomic states change in various ranges of R values 
from R = 0 to » (R = internuclear distance) are first discussed in a general way (section 2, on State Correlation 
Diagrams), and some needed terminology is introduced; at large R values, LCAS (linear combination of atomic 
substate, including Heitler-London and various other) types of wave functions are needed. In section 3, avoided 
crossings and other causes for irregularly shaped potential curves are reviewed, and homogeneous perturbations are 
also considered. Section 4 contains a critical discussion of MO correlation diagrams, emphasizing that the ordinary 
more or less H2

+-like correlations usually represent only pseudo-correlations in the range from large R values out to 
dissociation, except in the case of those electrons which on dissociation correspond to atomic closed shells; the 
forms of MO's as linear combinations of modified AO's (modified united-atom AO's at small R and modified sepa
rate-atom AO's at large R) are also discussed. In section 5, the course of the transformation of wave functions of 
the Rydberg states of H2 and He2 from MO-configuration forms near Re (where they are good approximations) to 
LCAS forms on dissociation is examined. For the MO's themselves, from R1, to °°, there is only a pseudo-correla
tion. Aside from further complications in some cases, the Rydberg states fall into two classes, of which the l<rg2p;ru 
and l<Tg3dTrg (either singlet or triplet) states of H2 (using MO descriptions which are appropriate near Re) are typical. 
The lo-e2pTru type dissociates smoothly along a normal potential curve into a Heitler-London-like (Is2p7r)u atom-
pair LCAS, while the l<rg3dTg type dissociates along a potential curve with a hump, in the neighborhood of which 
the wave function (as shown by J. C. Browne) can be approximated in terms of LCAS's only by a mixture of (ls«p?r)g 
and (Is3d7r)g atom-pair LCAS's, but as R -* oo attains a pure (Is2p7r)g LCAS. In both cases, the use of the atom-
pair LCAS's mentioned affords rather good wave functions even at Re, although, of course, corresponding ion-pair 
functions must be added (though this is less important than might appear at first sight because of their very marked 
lack of orthogonality to corresponding atom-pair LCAS's) if one is to obtain (good approximations to) the much 
better MO-configuration functions. 

1. Introduction 

Since publication of parts I-V of this work,2 some 
relevant new developments have occurred.3-5 

The present part VI deals especially (see section 5) 

(1) This work was assisted by the Office of Naval Research, Physics 
Branch, under Contract Nonr-2121 (01), and by the Office of Aero
space Research, U. S. Air Force, Electronic Systems Division, Air Force 
Systems Command under Contract AF19(628)-2474. 

(2) R. S. Mulliken, / . Am. Chem. Soc, 86, 3183 (1964). A number of 

with the dissociation behavior of diatomic Rydberg 

references to particular sections of that paper are given in the present 
text; for example, "V,2" means part V, section 2 of that paper. 

(3) R. S. Mulliken, Phys. Rev., 136, A962 (1964). 
(4) J. C. Browne (a) / . Chem. Phys., 42, 2826 (1965): 2s and 3pcr He5 

states; (b) Phys. Rev., 138, A9 (1965): 3dir states of H2 and He2; (c) 
J. Chem. Phys., 41, 1583 (1964): 3d8 states of H2 and long-range parts 
of 2p?r- and 3dir-state potential curves. 

(5) (a) W. M. Wright and E. R. Davidson, ibid., 43, 840 (1965): 
3dvr 3IL2 state of H2; (b) C. B. Wakefield and E. R. Davidson, ibid., 43, 
834 (1965): 2s, 3s, and 3d<r,3S8

+H2 states; also 2s, 3s, 3dff,i2g
+, and 

SdS,1'3 Ag states for a few J? values. 
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states, but sections 2, 3, and 4 are devoted to a review 
and clarification of some related matters, including the 
introduction of descriptive terminology which the 
writer feels to be much needed as an aid to clear under
standing. 

2. State Correlation Diagrams 

Correlation diagrams for diatomic MO's indicating 
how the forms and energies of MO's change with inter-
nuclear distance R from R = O ("united-atom") 
through Re to large R values (separate atoms) are 
familiar.6 These will be reviewed in section 4. The 
present section deals with the general characteristics of 
correlation diagrams for diatomic electronic states 
which have simple normal potential curves. These 
are states for which (a) the validity of the BO (Born-
Oppenheimer) approximation can be assumed and (b) 
whose potential curves U(R) either have a single fairly 
deep minimum (typical attractive states) or no mini
mum (repulsive states). States with potential curves of 
less regular shape are considered in section 3. 

From R = 0 to somewhat beyond Re (the MO region 
of R values), it is convenient to formulate the accurate 
electronic wave function $ as a linear combination of 
terms S c ^ ; each of MO electron configuration type. 
Usually ~ir contains just one dominant term ^ 0 with 
coefficient near 1.0, of SCF-MO (self-consistent field 
MO) form, plus a large number of other terms ^; 
with relatively small coefficients, representing CM 
(configuration mixing). This really means mixing of 
state wave functions of the same species but from 
different electron configurations; for example, l<ruV2g

+ 

mixes somewhat with lo-gV2g
+ in H2; as an analogous 

atomic example, ls22p6,1S mixes somewhat with 
ls22s22p4,1S. The situation with one dominant term 
of MO type may be called the minor MO-CM case. 
When spin-orbit coupling is important, CM of course 
includes some terms differing in multiplicity. 

At large R values (the transition region of R values) a 
major MO-CM case (two or more CM terms having 
relatively large coefficients) is usually7 reached or 
approached if we continue to build 1^ from MO-
configuration terms. At still larger R values (the 
AO region of R values, where AO means separate-atom 
AO), major MO-CM usually7 is required if MO-
configuration terms are used. 

However, major CM can be avoided at large R 
values if V is shifted to a two-atom AO-configuration 
basis. ^ then takes the form of an LCAPAS molecular 
wave function, meaning a function which is an anti-
symmetrized product &\pa\pb (an AP) of atomic substate 
(AS) wave functions \pa and \j/h, or usually a linear 
combination (LC) of such antisymmetrized products.8 

In general, each atomic-state function Nf may usually be 
expressed using one dominant SCF-AO term belonging 
to a single AO configuration, plus minor CM; the 
dominant term itself, likewise each of the minor CM 
terms, may consist either of a single Slater determinant 

(6) Cf. R. S. Mulliken, Rev. Mod. Phys., 4, 40 (1932). 
(7) Exceptions in which only minor MO-CM is needed at all R values 

will be discussed in section 4. 
(8) In connection with his "atoms-in-molecules" method, W. Moffitt, 

Proc. Roy. Soc. (London), A210, 245 (1951), introduced the term 
"composite (atomic) function" for what is called here an APAS func
tion. However, there seems to be a need for a more explicitly descrip
tive symbol, especially since we usually need to deal with linear combina
tions of APAS's. 

or a linear combination of these, depending on the AO 
configuration and on AfL and Af8. Each atomic 
substate function \p used must be of strong-field type, 
that is, with definite AfL and Ms values. In general, 
there are several substate xp's (each one in the form of a 
single Slater determinant) for the dominant term in 
each of the participating atomic-state functions *» 
and \f-b, but in general this degeneracy is partially split 
in the molecule and linear combinations only of suit
ably selected ^ a ^ b products (each such product then 
made over-all antisymmetric in all the electrons) are 
taken; similarly for the minor CM terms. 

Although less clearly self-explanatory than LCAPAS, 
the letters LCAS will be used hereafter for the sake of 
brevity. Every LCAS is associated with one single two-
atom AO configuration, as for example lsB

22sB
22pB-

ls0
22so22p0

4 for a molecule BO. Such a two-atom AO 
configuration can be thought of as similar to a single-
atom AO configuration; for example, the BO two-
atom just mentioned is comparable to a single-atom 
configuration ls22s22p3s24s24p4. In the normal case 
that only minor AO-CM is present in the atomic wave 
functions \^a and ^ b used in constructing any LCAS 
molecular ^ which is valid at large R values, one can 
say that there is only minor AO-CM in this V. 

Simple examples of LCAS functions suitable in the 
AO region include the normal and various excited-
state functions of H2

+, H2, He2
+, HeH, Li2, BeH, and 

also H + H - and other ion-pair functions. Heitler-
London (HL) and ion-pair functions are special cases of 
LCAS functions. Thus for the H2 configuration 
lsalsb, the Af5 = + 1 substate of the 3S11

+ state is 
represented by the single APAS 

Cfclsa(l)a(l)lsb(2)a(2) 

while for Ms = O, LCAS's are needed 

alsa(l)a(l)lSb(2)j8(2) ± Ctlsb(l)/3(l)lsb(2)a(2) 

with the + and — signs belonging to the 3 2 u
+ and 

1Sg+ states, respectively. When there is only one 
electron, as in H2

+, the LCAO MO function at large R 
values can be regarded equally well as a simplified 
LCAS function. For the Rydberg states of H2 and 
He2 at large R, LCAS forms are required (see section 5). 

Matters are somewhat more complicated in cases 
where the electron configuration of either or both 
atoms is "wide open," that is, differs from a set of 
closed shells by more than ± 1 electron. Such a two-
atom electron configuration gives rise to more than one 
atomic-state pair; going asymptotically to each of 
these as R -*• a>, there are in general several molecular 
U(R) curves corresponding to various LCAS's derived 
from the given pair of atomic states. For example, 
the lowest-energy AO configuration ls22s22p2 of the C 
atom gives a 3P, a 1D, and a 1S state. Two normal 
atoms (both 3P) give a number of C2 molecule LCAS's 
each with its own U(R) curve. Each of the other 
atomic-state pairs 3P-1D, 3P-1S, 1D-3P, 1D-1D, 1D-1S, 
1S-3P, 1S-1D, and 1S-1S, belonging to the same two-
atom AO configuration ls22s22p2ls22s22p2, likewise 
gives rise to U(R) curves. 

Although at large R each molecular V consists of a 
single LCAS, at smaller R forced intraconfigurational 
state-mixing (forced AO-SM) sets in between LCAS's 
of the same diatomic species (e.g., 1Sg+ or 3nu) associ-
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ated with other energy asymptotes corresponding to 
other state pairs (e.g., 3P-1D, 3P-1S, etc., mentioned 
above) of the same two-atom AO configuration. Then 
as the transition region of R is approached at still 
smaller R, forced AO-CM from extraconfigurational 
mixing (from LCAS's derived from state pairs belonging 
to excited two-atom AO configurations, e.g., Is2-
2s22p2ls22s2p3 or ls22s22pls22s22p3 in our C2 example) 
also sets in increasingly. 

In the correlation of a group of electronic states 
from small to large R values, or vice versa, the course 
of the several potential curves depends very much on the 
energy patterns of MO-configuration and AO-con-
figuration states. Thus for H2, the U(R) curves of the 
two dominant MO-configuration states l<rglcru,

3S11
+ 

are near together at small R values but separate widely 
as R increases, with the 3SU

+ going to the low-energy 
3SU

+ HL state of AO configuration lsa lsb and the 
1S11

+, after approaching Is2 ion-pair form, finally going 
to a 1Su+ LCAS state of ls2p AO configuration. 
Correlating in the reverse direction, from large to small 
R, the low-energy AO configuration ls a lsb gives rise 
to the HL attractive state Is-Is1

1Sg+ and the repulsive 
state l sXls , 3 S u

+ which at small R values belong 
respectively to two different MO configurations 
lo-g2 and l(Tgl(ru of widely different energy.9 The 
subject of the effect of differing dissociation pro
ducts on the molecular constants of different states 
of the same MO electron configuration is discussed 
further in another paper.10 

3. Irregularly Shaped Diatomic Potential Curves 

Although most U(R) curves of low-energy diatomic 
electronic states are either smooth attraction curves 
with one minimum, or else smooth repulsion curves, 
curves of less regular form are increasingly being 
found. Possible causes of these irregularities are now 
reviewed. 

Avoided Crossings and Homogeneous Perturbations. 
The most important cases of humps or deformation in 
attractive curves can be understood in terms of inter
action at a crossing of two attractive potential curves 
associated with electronic states which are of the same 
group-theoretical species. It will be recalled that, in 
atoms, the energies of two zero-order states of the 
same species but of different dominant AO electron 
configuration usually are quite different but occasionally 
by accident are nearly equal, in which case major CM 
between them occurs if the matrix element of their inter
action is large enough. In molecules, where the elec
tronic energy varies with R, it can happen that the 
U(R) curves of two zero-order states of the same 
species, but whose wave functions are orthogonal or 
nearly so, and each of which has only minor CM 
(MO-CM if small R, AO-CM if large R), can come near 
each other, or may cross, in some range of R. If they 
interact strongly, what may be called accidental major 
CM then results over the range of R where the two 
curves are sufficiently near. 

(9) Symbols like ls- ls and IsX Is will be used in this paper for LCAS 
singlet and triplet states, respectively. Similarly for a single atom, sym
bols like ls- ls and IsX2s for the ls2s,»S and ls2s,3S states of the He 
atom will be used. 

(10) R. S. Mulliken in "Quantum Theory of Atoms, Molecules, and 
the Solid State," P. O. Lowdin, Ed., Academic Press Inc., New York, 
N. Y., 1966. 

In terms of the size of the interaction matrix element 
involved, crossings can be weak or strong. If the 
interaction matrix element is small, it is best to think 
in terms of strong mutual perturbations (homogeneous 
perturbations) between sets of vibronic-rotational levels 
belonging to the two potential curves which approach or 
cross. (In the case that one of two U(R) curves which 
cross is repulsive and the other attractive, the inter
action causes either an avoided crossing or very strong 
homogeneous predissociation of the energy levels of the 
attractive curve.) These perturbations are strongest for 
energy levels with electronic energy near that of the 
point of crossing or closest approach. They represent 
strong departures from the validity of the BO approx
imation. 

The NO molecule affords many examples of this 
type of interaction11 with one wave function that of a 
Rydberg state (MO electron configuration • • -5o-2l7r4Ry, 
where Ry denotes a Rydberg MO) and the other that 
of a valence-shell state (of MO configuration, for 
example, ---50-2ITT^TT2). Another interesting example 
is that of the lo-g3s,3Sg

+ and lo-g3d<r,3Sg
+ H2 Rydberg-

state curves,12 which cross almost exactly at Re of 
both curves and of the positive ion. The interaction 
matrix element is only 75 cm - 1 and the homogeneous 
perturbation viewpoint is appropriate. The smallness 
of the matrix element is no doubt a result of the nearly 
UAO forms of the 3s and 3dtr Rydberg MO's, together 
with nearly identical lo-g forms, in the two zero-order 
functions. 

If the matrix element is large enough, the interaction 
between two minor MO-CM (or minor AO-CM) 
potential curves which would cross can best be thought 
of as resulting in two new resultant curves which do 
not cross (avoided crossing case). For this case it is 
necessary that the new curves be sufficiently far apart, 
compared with vibrational energy level spacings, so that 
the Born approximation holds reasonably well for them. 

Similar considerations apply in the case of avoidance 
without crossing, which occurs if two minor CM curves 
come close and interact strongly yet do not cross. 

One example of avoided crossing is that of two minor 
MO-CM 2Su+ curves of N2

+ with MO electron con
figurations • •-2o-ul7Tu43crg

2 and •• -2(Tu217ru
33crgl7rg; 

here two resultant curves are found experimentally 
which are somewhat abnormal in shape but show no 
humps or extra minima.13 Here the avoided crossing 
occurs at a small R value and between two valence-shell 
MO states, a situation which favors strong interaction. 

Another striking example is that of the lowest 
excited 1 S 8

+ state of H2, with two minima and a hump 
between.14 This is explainable by an avoided crossing 

(11) Cf. K. Dressier and E. Miescher, Astrophys. /., 141, 1266 (1965). 
(12) See ref 5b. The authors (c/. their Figure 1) treat this case as 

that of an avoided crossing. From the homogeneous perturbation 
viewpoint, however, the 3s and 3d<r curves should be allowed to cross in 
their Figure 1. The 3d<r curve then goes over a hump 0.41 ev above the 
asymptote, toward a dissociation asymptote with one 2-quantum H 
atom, while the 3s curve goes, without a hump, to an asymptote with a 
3-quantum atom. 

(13) Cf. R. S. Mulliken, "The Threshold of Space," Pergamon Press, 
New York, N. Y., 1957, p 177, note on states 180 and 183. For another 
example of crossing in N2, but belonging to the homogeneous perturba
tion type, see P. K. Carroll and R. S. Mulliken, J. Chem. Phys., 43, 
2170(1965). 

(14) (a) Cf. E. R. Davidson, ibid., 35, 1189 (1961); (b) G. H. Dieke 
and S. P. Cunningham, J. MoI. Spectry., 18, 288 (1965). This paper 
tends to suggest that the homogeneous perturbation viewpoint may be 
more appropriate even here than the avoided crossing viewpoint. 

Mulliken / Rydberg States of Molecules 
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between the minor MO-CM curve of the Rydberg state 
l<7g2s, 1Sg+, rising fairly fast toward a dissociation 
asymptote corresponding to an LCAS wave function 
with one 2-quantum excited atom, and that of the 
doubly excited minor MO-CM l<ru V 2 g

+ state which 
because of its ion-pair character in AO approximation 
has a rather deep minimum at large R. At still 
larger R, where now the two states can best both be 
described as minor AO-CM states, a second avoided 
crossing of the same two curves must occur so as to 
permit the actual lowest-excited 1Sg+ state curve to 
dissociate into the LCAS state mentioned above, 
while the ion-pair state goes toward a higher-energy 
asymptote. 

Typical examples of avoided crossings in the AO 
region are found in the alkali halide molecules MX 
where avoided crossings occur of covalent LCAS 
wave functions M-X and ion-pair functions M+X - .15 

In the foregoing examples and probably in most other 
cases of avoided crossings, probably the two minor 
CM wave functions whose curves tend to cross are 
strongly mixed only in a moderate range of R values in 
the neighborhood of the value R0 at which the minor 
CM curves would cross. (At R0, of course, there must 
be a 50:50 mixing.) The breadth of the R range in 
which there is strong mixing should be greatest if the 
interaction matrix element is large, and if the zero-
order potential curves intersect at a small angle. 

At R values distant from an R0, the wave functions in 
typical cases may be minor CM functions which are 
nearly as pure single-configuration functions as in 
cases where there is no avoided crossing. Granting 
this, if one follows the lower of the two curves resulting 
from an avoided crossing, from small R values through 
R0 to large R values, the character of the wave function 
must shift from being near that appropriate to one of 
the two nearly pure electron configurations to that for 
the other, while for the upper of the two curves the 
reverse change occurs. 

In a state correlation diagram (cf. section 2), either of 
two points of view can then be adopted in cases where 
an avoided crossing occurs. One can follow each of the 
resultant U(R) curves and say that the nature of the 
electron configuration (and/or state) changes radically 
in passing through R0. Or one can correlate the seg
ments of the two U(R) curves below and above R0 

as if crossing had occurred, so that segments of like 
configuration and state are correlated, although at the 
same time recognizing that near R0 there is a range of R 
where the actual states are strongly mixed. The 
second viewpoint makes sense especially in cases 
where the R range of strong mixing is reasonably well 
localized. 

London Dispersion Force Effects. Small humps, 
minima, or other deviations from simple form in U(R) 
curves can be produced by (a) second-order or (b) 
first-order London dispersion forces. The former (a) 
can produce shallow van der Waals minima in what 
otherwise would be pure repulsion curves.16 The 
latter17 (b) can produce shallow minima at large R 

(15) Here the R value (Re) at crossing is sometimes so large and the 
interaction matrix element so small that homogeneous perturbation 
instead of an avoided crossing occurs (see R. S. Berry, J. Chem. Phys., 
27, 1288 (1957)). 

(16) As an example, very accurate calculations by W. Kolos and L. 
Wolniewicz, ibid., 43, 2429 (1965), show a van der Waals minimum of 
depth 4.3 cm - 1 at 4.15 A in the IsXIs1

3Zu+ repulsion state of Hj. 

in repulsion curves, or small maxima at large R for 
stable attraction states. A good example is the hump 
in the lowest 1IIu Rydberg state of H2;18 further 
similar examples are known in a 1ITu state of Na2 and in 
other cases." 

Another interesting example is that of the lowest 
Rydberg 1IIg state of H2 (of MO configuration lo-g3d7r 
at R1.), which has a stable minimum, then with in
creasing R a maximum due to avoided crossing of 
LCAS type (see section 5), and finally a first-order 
dispersion minimum40 of depth 0.015 ev at large R. 

Exchange Effects. In atoms, singlet- and triplet-
state energies differ approximately by the presence of an 
exchange energy -\-K for the singlet and —K for the 
triplet, with the exchange integral K always a positive 
quantity. In LCAS states of HL type, singlets and 
triplets again differ by the presence of +K or — K, 
but now K is negative in cases like that of two normal H 
atoms where as a result Is-Is1

1Sg+ is attractive and 
l sXls , 3 2 u

+ is repulsive.9 (The negative value of K 
is connected with the nonzero value of the overlap 
integral between the Is AO's of the two atoms.) 
Similarly for the BH molecule at large R values, the 
normal state HL function (ls22s22po-B)-ISH,1^+ is 
attractive, while the (ls22s22po-B)XlsH,32+ must be 
repulsive.9 However, in the 1II and 3II excited states 
with LCAS configuration (ls22s22p7r)BlsH, K is positive 
as in atoms, since the overlap integral and bonding 
between 2p7rB and lsH are nil. This exchange term 
contributes, along with another, toward making the 1II 
state repulsive at large R, but finally at smaller R 
an avoided crossing creates a minimum, leaving, how
ever, a hump of 0.12-ev height between R0 and R = » . 
The other exchange effect is a nonbonded repulsion (as 
in HeH) between the lsH electron and the 2s2 

closed shell on boron. Very likely the latter effect 
makes the larger contribution to the repulsion at 
moderately large R, but the presence of the other 
exchange effect is interesting at least in principle.19 

4. Correlation Diagrams for Diatomic MO's 

The familiar correlation diagrams for diatomic 
MO's6 are supposed to indicate, for each MO in the 
MO electron configuration of any particular electronic 
state, something about how the MO changes from 
R = O through R0 to R = °°. For homopolar mole
cules the correlation diagram for H2

+ serves as proto
type. Here for each MO its term value or binding 
energy T is shown as a function of R, and names or 
symbols indicating the asymptotic forms of the MO at 
R = 0 (UAO limit) and at R = » (AO limit) are given. 
Near R = «> the MO is of LCAO form Xa ± Xb, with 
an AO x which in general is a hybrid of AO's dif
fering in / ; as R -*• co ,7" of the MO approaches equality 
to T of this AO. At intermediate R values the MO can 
be given a name based on its form near R = 0 or 
near R = » , or on some other basis. For H2

+, the 
UAO name is most often used. The function T(R) 

(17) Cf. R. S. Mulliken, Phys. Rev., 120, 1674 (1960); J. C. Browne, 
ref 4c on II states. 

(18) Accurate calculations by Kolos and Wolniewicz16 gave a hump 
of height 105 cm"'at K = 4.75 A. Cf. also ref 17 and J. C. Browne,/. 
Chem. Phys., 40, 43 (1964). 

(19) For a discussion of the nature of the 1II state of BH and the 
height of its hump, see A. C. Hurley, Proc. Roy. Soc. (London), A261, 
237 (1961). Hurley, however, did not consider the +K contribution to 
the repulsion at large R. 
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for each MO is unique and is quantitatively known or 
calculable. Each T(R) is equal to the vertical ionization 
energy I(R), that is, U+(R) - U(R), where U+(R) 
and U(R) are the potential curves of H2

2+ (here of 
course U+ is merely e2/R) and H2

+. Another point is 
that for each MO and T(R) of H2

+ there is only one 
electronic state. 

In other molecules, even for ionization of an elec
tron out of one particular MO, there is no unique 1(R) 
with which a T(R) for that MO can be identified, 
since occupancy of this MO occurs for many 
different states of the molecule and its positive ion, 
each with its own potential curve. In practice, to be 
sure, one is likely to be most interested in removing the 
electron from a molecule in some particular state, for 
example, the normal state, so that the difficulty in 
deciding on a single or perhaps an average I(R) to be 
identified with T(R) is reduced. 

But further and most especially, the identification of 
I(R) or T(R) with a particular MO has meaning only to 
the extent that the wave functions of the relevant mole
cule state or states and ion state or states can be 
approximated by >Fs with minor MO-CM only. 
Usually this condition is satisfactorily fulfilled near i?e 

but fails at large R values because of increasing MO-CM 
For this reason the meaning of the usual correlation 
curves as R -*• » is in general open to very serious 
question. At best they have in general only qualitative 
meaning at large R values. 

Before exploring this major difficulty, it is useful to 
summarize some of the other differences between the 
T(R) curves of H2

+, discussed2 in section V,2, and those 
of other molecules. 

(1) At R = O the hydrogenic / degeneracy which 
occurs in He+ is removed, resulting in some changes in 
the energy order shown in Table 1 of ref 2 for H2

+, but 
not in the splitting patterns (eq 17 of ref 2) for MO's 
of given n and / which differ in X. 

(2) At R = » removal of the hydrogenic / degen
eracy causes hybrid LCAO forms to be replaced by pure 
/ LCAO forms, in a familiar way (cf. Table I). At 
smaller R, hybridization is partially restored. 

(3) The noncrossing rule (cf. section 3) tends to 
introduce some shortcuts which do not occur in H2

+ 

because of separability there in elliptical coordinates. 
Consider for example the MO's which at small R 
have the LCUAO forms crg3s and o-g3d, essentially the 
same as the UAO forms 3s and 3d<r (cf. Table II). Of 
these, 3s is lower in energy at small R, but correlates, as 
R increases to large values, with the ag3s LCAO form, 
which is higher in energy than the o-g2p form with which 
3d<r of small R correlates. Thus the correlation curves 
would cross at intermediate R values. For H2 the two 
MO's are both Rydberg MO's, and the crossing takes 
place at R values where both are still so near to being 
UAO's that their interaction at the crossing point is 
weak enough that it makes good sense to ignore the 
noncrossing rule.20 The same two MO's, of course, 
occur in all homopolar diatomic molecules. In N2 

at Re of its normal state, one of them is a Rydberg MO 

(20) See the discussion on homogeneous perturbations near the 
beginning of section 3, including ref 12, and also especially the next-to-
last paragraph of the first subsection of section 3. Strictly speaking, it 
is not the 3s and 3d<r MOs' of Ha whose curves cross, but only the CZ(R) 
curves of the l<rg3s and lo-g3d<r,32g

+ states, and (at a somewhat dif
ferent R) of the corresponding 1S8

+ states. 

Table I. Approximate Forms of Homopolar Diatomic MO's 
at Small and Large R Values" 

Small R 
(LCUAO 

form) 

5g3d (10) 
Tg3d (9) 
o-g3d (8) 
*\,3p (7) 
<ru3p (6) 
<rg3s (5) 
Tu2p (4) 
(T„2p (3) 
<rg2s (2) 
<rgls (1) 

Large R 
(LCAO 
form) 

Sg3d (17) 
xg2p (7) 
<rg2p (5) 
*-u3p (12) 
o-u2s (4) 
<rg3s (9) 
7Tu2p (6) 
<r„ls (2) 
<rg2s (3) 
,T8Is(I) 

Small R 
(LCUAO 

form) 

*„4f(20) 
M f (19) 
7Tu4f (18) 
cru4f(17) 
5g4d (16) 
7Tg4d (15) 
(rg4d (14) 
7ru4p(13) 
TAP (12) 
crg4s(ll) 

Large R 
(LCAO 
form) 

<Mf(36) 
5u3d(18) 
xu3d(16) 
o-u2p (8) 
M d (29) 
xg3p (13) 
<r,3p(ll) 
xu4p (24) 
cru3s (10) 
crg4s (21) 

a Table I is constructed like Table 1 in V,l of ref 2, The numbers 
in parentheses represent the energy orders at small R > O, and large 
R < =), for atoms with more than one electron. The energy order 
for given / but different X for small R is what is expected on splitting 
the united atom. For large R the energy order for given / and X is 
based on whether the overlap is positive, giving bonding (trg, xa, 
Sg, <pu for all [), or negative, giving antibonding (<ru, 7rg, Sn, for all I), 
while for given / and different X it is based on the magnitude of the 
overlap (decreasing as X increases from X = O). For small R the 
overlap within the LCUAO form is positive in every case, having 
suffered a reversal of sign as compared with large R in the case of 
those MO's (e.g., cru2p) which are antibonding at large R. 

of nearly 3s UAO form while the other (resembling 
3do") is a valence-shell MO of ag2h LCAO form, where 
h is a hybrid of mostly 3ptr with some 2s. The curves 
of these MO's would cross only at quite small R values 
such that both are of LCUAO form, and again it makes 
good sense to ignore the noncrossing rule. It seems 
likely that this situation is quite general, so that it is 
justifiable to assume the same crossings to occur in 

o-g2h 
other homopolar diatomic molecules as in H2 

(4) Electrons in non-Rydberg MO's (e.g. 
of N2) in general move in much stronger fields than for 
corresponding H2

+ MO's (which except for lo-g and 
lcru must all be classed as Rydberg MO's), and so have 
much higher ionization energies. 

Returning now to the problem of the failure of the 
minor MO-CM or SCF-MO approximation at large R 
values, we note again that in the transition region of R 
values (R > l.5Re or 2Re perhaps), and still more in the 
AO region, strong MO-CM usually is required, and then 
(with some exceptions to be discussed later) one cannot 
in general identify any actual / with the T of a particular 
MO. The normal, 1 S 8

+ , state (state N) of H2 furnishes 
a simple example. At R1. of H2 (0.74 A), according to 
very instructive calculations by Das and Wahl,21 

the MO configuration l<rg
2 strongly predominates 

(* is 98% lo-g
2), but there is minor CM (mostly lo-u

2, 
1TTU

2, and 2trg
2). At 1.59 A, ¥ is still 90% Ia8

2, while 
lcru

2 CM has increased to 9% and other CM has de
creased. At 3.18 A, lo-g

2 has fallen to 56% and l<ru
2 

has risen to 44%; other CM has now almost disap
peared. As R -»• oo, ¥ becomes 2-1/2(lo-g

2 + lo-u
2), 

lo-g becomes accurately o-gls = 2_1/!(ls + Is), and 
lo-u becomes accurately o-uls == 2~1/!(ls — Is), where in 
the limit Is is accurately free H-atom Is. This V is, of 
course, identical with the HL function Is- Is5

1Sg+. 
The example of state N of H2 suggests that the usual 

correlation ls(UAO>-lo-g(MO)-o-gIs(LCAO) for the 
lo-g MO as R goes from O to » , with the implication 

(21) See forthcoming paper by G. Das of this laboratory and A. C. 
Wahl of Argonne National Laboratory, and subsequent paper by G. Das. 
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that the Is in <rgls at R = c° is a. free H-atom Is, is 
seriously wrong or misleading in the range of R values 
larger than about 2Re.

22 However, instead of follow
ing the actual state N ^ from R = 0 to Re to °°, it is 
possible by theoretical calculations to follow the pure 
SCF-MO lo-g

2 wave function from R = O to <=. At 
R = O, this coincides with the SCF-AO Is2 wave 
function for the He atom. It is of interest to note that 
the energy of this ^ is too high by 1.144 ev (the correla
tion energy, CE)23 compared with that of the accurate 
^ , because it lacks the needed minor CM. At Re, the 
CE for the SCF-MO lo-g

2 * is still almost the same 
(1.111 ev). At larger R values, the CE rises, along 
with the need for increasing CM, at first slowly, 
then faster, to 7.74 ev21 as R -*• °°; this CE is the 
energy difference between pure SCF-MO lo-g

2 (here the 
same as <rgls

2) and the 50:50 mixture of l<rg
2 and 1<TU

2 

(identical with the ls- ls HL function) which accurately 
represents state N of H2 at R = <» in MO language. 
At .R= co , / for state N of H2 is j u s t / = T = 13.6evfor 
Is of the free H atom if we use the HL function, whereas 
/(lo-g) = T(Iug) for the pure SCF-MO configuration 
lcrg

2 is less than this by 7.74 ev: T(Iv11) = 13.60 -
7.74 = 5.86 ev. For molecules other than K2, similar but 
more complicated discussions and results are applicable. 

One way to look at the above results for H2 is to note 
that as MO-CM increases and becomes major MO-CM 
at large R, the identification of / of state N with 
T(IcTg) becomes unacceptable, and the usual correla
tion Is(UAO)-I(Tg-(Tgls is simply wrong. 

An alternative viewpoint is reached on examining 
why the l(rg

2 SCF-MO energy is so much higher than 
the accurate energy at R = <». Namely, each elec
tron, in an MO of form crgls, is required to move in the 
field of the nuclei shielded by the other (T8Is electron, 
which means that each nucleus is shielded by — 1^e. 
The energy of lag

2 is then roughly halfway between 
that of the HL function ls-ls and that of the ionic 
LCAS function 2-1/!(lsa

2 + lsb
2), and the form of the 

Is AO in (TgIs is roughly halfway between that of Is in 
H and Is in Is2 of H - . If the latter kind of Is is used, 
the correlation Is(UAO)-I(Tg-(TgIs(LCAO) which in the 
previous paragraph was found unacceptable, is now 
acceptable, though academic. Further, the two cor
relations are qualitatively, or formally, the same. 

Correlations and correlation diagrams based on the 
use of single-configuration SCF-MO wave functions 
(no CM) all the way from R = O to <» can be desig
nated as ideal correlations and correlation diagrams. 
At the present state of computer capability, it would be 
feasible, though only of academic or heuristic value, 
to compute T(R) curves fairly accurately for ideal 
correlation diagrams of light molecules. However, 
one would still have to contend with the fact that in 
general one would obtain different T(R) values for 
the same MO in different states.2 4 

A more practical point of view is that MO correlation 
diagrams are not intended to have better than rough 

(22) In some loosely bound molecules (cf. ref 21 for Li2 and Fz) the 
SCF-MO approximation is less good at Re than for H2, and becomes 
worse more rapidly with increasing R. 

(23) The word "correlation" is of course here being used in a dif
ferent sense than in "correlation diagram." 

(24) Even in H2, where we have been considering T(I(T8) just for the 
1Sg+ normal state, we could also ask for 7"(lo-e) for among others the 
states which in MO approximation are denoted l<rKlau,

 3S11
+ and Xan-

1 (Tu1
1S-J+, and find somewhat different values for each of these three 

states, whether we use ideal correlations or ordinary / values. 

meaning. Then in ranges of R values where there is 
only minor MO-CM, the use as T values of / values 
averaged in some manner over different states if neces
sary is surely acceptable. But as soon as there is major 
MO-CM, a proper correlation no longer exists. An 
improper correlation such as that which for H2 would 
connect l<rg at Re (using / of state N for T) with o-gls 
constructed from free H-atom Is AO's at <=, with 
neutral H-atom / for T, can be called a pseudo-correla
tion. 

As will be seen in another paper,10 such pseudo-
correlations are of real interest in connection with 
bonding powers of MO's. Aside from that, pseudo-
correlation diagrams have qualitative value as rough 
empirical approximations to ideal correlation diagrams. 

Fortunately there are some situations in which the 
ordinary correlations remain valid at all R values. 
Namely, for MO's in those MO closed shells which 
stand in correspondence to atomic closed shells on 
dissociation, the complications just discussed largely 
disappear. The simplest example is state N (a repul
sive state) of the He2 molecule. Here the SCF-MO 
wave function corresponding to the MO shell structure 
lo-g

2l(Tu
2 becomes identical as R -*• » with that for the 

SCF-AO structure lsa
2lsb

2, while the wave functions of 
the two SCF-MO ionized structures lcrg

2lcru and lo-glo-u
2, 

corresponding to removal of a lo-u or a lcrg electron, 
respectively, are rather nearly identical (see below) 
with those of the respective SCF-AO LCAS structures 
2_1'2(lSa2lSb ± lsalsb

2). Hence the correlations Ic8 

—*• o-gls and Ian -*• cruls are valid as R increases from 
small values to dissociation, with Is meaning nearly 
just the SCF Is of the He atom.25 

[In the MO wave function of form {a(lo-g
 2I(T11

2) + minor 
MO-CM} for He2, where a is the antisymmetrizer, the MO's lcrs 

and 1 (T11 must asymptotically approach the respective forms 2_1/ !(lsa 

± lSb) as R -«• co. By expanding and rearranging, it is then easily 
found that a(l(7g

2lo-u
2) is the same as a(lsa

2lsb2), and presumably 
the same equality holds between the exact MO-type wave function 
and the exact APAS function a{(ls a

2 + minor AO-CM)(lsb
2 

+ minor AO-CM)). 
For the two He2

+ states as R -* co, now neglectingCM for simpli
city, the SCF-MO functions are a[gig2u3] and a[uiu2g3], while the 
corresponding LCAPAS functions are 2-1</![aia2b3" ^ bib2a s"], 
for the 2Su+ and 2 S 6

+ states, respectively. Here a and b stand for 
lSa and ls b He-atom SCF AO's, a " and b " for ls„ and l s b AO's 
of He+ , g and u refer to 2 - ' / ! (a ' ± b') where a' and b ' are Is 
AO's which are intermediate in form between He and He+ AO's 
but nearer to the former, the numerical subscripts 1, 2, 3 refer to the 
three electrons, and the orbital symbols with or without a bar over 
the letter denote that the orbital is to be multiplied by a spin func
tion a or (3, respectively, in case the total Mg is + V2, but 0 or a 
in case Ms = — Vs- Here expansion of the antisymmetrized MO 
functions in terms of AO's and rearrangement yields expressions 
2"1^aIaI'as'bs' =F bi 'b /as ' ] which are formally the same as the 
accurate LCAPAS functions but differ in having a ' and b ' through
out, instead of a, b for the neutral He atom and a" , b " for the He+ 

ion. 

This difference, while somewhat like that between the SCF-MO 
and HL wave function for state N of H2 as R —• co, can be seen to 
be a much less major one. This conclusion is decisively supported 
by an energy computation for which the writer is indebted to Drs. 
T. L. Gilbert and A. C. Wahl of Argonne National Laboratory. 
They find an electronic energy of -4.824275 hartrees for either of 
the SCF-MO functions lo-g

2lcru or lcrgl(ru
2 of He2

+ at R = co, as 
compared with -4.861673 hartrees for either of the LCAS func
tions 2-1A[Is8

2ISb" ± ISb2Is8"] using the SCF-AO approximation 
for Is2. Thus the SCF-MO functions are 0.0374 hartrees or 1.017 

(25) For He2 at very small R, however, there is major CM near a 
crossing of lffg

2l<ru
2 (approximately ls22p<r2) by lffg

!2(rg
2 (approxi

mately ls22s2). 
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ev higher in energy than the SCF-AO LCAS functions, or 2.161 
ev higher than the accurate APAS functions after allowing for 
1.144 ev of He atom CE in Is2. In other words, the CE is 2 ev for 
the SCF-MO function at =>, as compared with 1 ev for the SCF-AO 
APAS function. Thus although more CM is needed for the 
SCF-MO than for the SCF-AO function to convert it to an exact * 
at large R values, still only minor CM is needed. Hence this case is 
very different from that of the normal state of H2, where major 
MO-CM was required for the SCF-MO function.] 

Typical stable molecules have both inner-shell 
MO's whose correlation behavior as R -*• <= is like 
that of the lcrg and lcru MO's in He2, and valence-shell 
MO's which behave like I<rg in state N of H2. For 
example, in N2 the correlations ISUA -*• l°~g —*• <?glssA> 
2po-UA -*- Ian -*• crulsSA, 2sUA -*• 2o-g ~* o-g2sSA, and 
3pouA -*• 2<ru -*• (Tu2sSA (where UA refers to the 
united atom, SA to the separated atoms) all involve 
closed-shell electrons of the separate atoms, and as 
R -+ co the MO T values to a good approximation go 
continuously into those of the SAO's indicated.26 

Thus these inner-shell MO's follow conventional cor
relation behavior at all R values. Pseudo-correlation 
at large R values as R -*• » occurs only for outer-
shell LCAO-type MO's whose corresponding AO's 
(i.e., SAO's) typically are valence AO's in the HL 
theory, e.g., in the case of N2, the 2p<r and 2px AO's. 

It is worth while now to give some attention to the 
intermediate ranges of R values, beginning with H2

+ 

as prototype. The following scheme (cf. section V,l 
of ref 2) summarizes how the form of an H2

+ MO 
changes from R = O to °o. 

(mUAO or) (MTJAO or ) 
UAO = LCUAO >• < } — > - ^LCMUAO > — > 

(.LCmUAO J I = LCMAOJ 
L C M A O — J - L C A O (1) 

In the symbols, m or M means modified.*'' The form of 
the MO can be described at all R values as Xa ± Xb 
if in the middle range x is taken as a strongly modified 
(M) UAO (He+ AO) or, alternatively, as a strongly 
modified H-atom SAO. At small R, however, x 
is best taken as a mildly modified (m) UAO, and at 
large R as a mildly modified separated-atom AO. 
Equation 1 holds not only for H2

+ but, in ranges of R 
where they are valid, also for the correlation diagrams of 
all homopolar diatomic molecules, with UAO and AO 
taken as SCF AO's of united atom or separated atoms, 
respectively. Particularly in the middle range of R, the 
actual MO is an entity which sometimes is far from 
either a simple LCUAO or a simple LCAO form. 
Equation 1 is also valid for pseudo-correlation diagrams 
from R = O to =°, but then, of course, has not the same 
meaning in regions of major MO-CM (mainly at large R 
values). 

On the basis of eq 1, the MO region as defined in 
section 2 includes a UAO or LCUAO subregion. For 
H2

+, this region extends to larger and larger R values 
with increasing / for given n (cf. Table III of ref 2) and 
with increasing n for given /. 

(26) At Re the SCF MO's 2ae and 2<ru deviate greatly from the simple 
forms o-g2s and (ru2s with 2s of N atom SCF form, but as R —• co they 
must approach 2-1/!(2sa ± 2Sb) with 2s forms the same and T values 
nearly the same as for free-atom 2s SCF AO's (cf. the discussion OfHe2 
above). 

(27) (a) See R. S. Mulliken, J. Chem. Phys., 36, 3428 (1962), section 
II, 1-3; ibid., 43, S39 (1965). (b) Recent calculations by S-I. Kwun 
in this laboratory indicate, however, that at intermediate J? values the 
UAO or MUAO approximation remains rather good when the LCUAO 
or LCMUAO fails badly, while the LCMAO also is good. 

The JR-value ranges for various R regions are con
veniently characterized by the reduced internuclear 
distance £, defined28 by R/2a, where a (cf. eq 6 of ref 2) 
is the approximate radius of maximum density for a 
suitable AO or (see below) STO. In the UAO region 
(roughly £ < V2); a of the UAO is of course suitable. 
Rydberg MO's at Rydberg-state Re values fall in the 
UAO region. At larger R values (say £ ^ 1), one 
makes use of the fact that any MAO x in a LCMAO 
form Xa ± Xb can be expressed by a linear combination 
of STO's. Each STO is characterized by an n and a 
f. A good rule for estimating a and so £ is then to 
use in the formula a = «a0/f of eq 6 of ref 2 the n 
and £ of the STO whose coefficients are largest in the 
MAO expression at the given R value (see section V5I 
for discussion of lag, l7ru, and l<ru of H2

+ as examples). 
In molecules with many electrons, different MO's are 

in different £ regions. At R values near Re, the inner-
shell MO's are far out in the LCAO region (£ > > 1), 
the normally occupied valence-shell MO's are in the 
middle region (£ ~ 1), any excited valence-shell MO's 
are in the intermediate region with £ perhaps somewhat 
less than 1, while any Rydberg MO's are in the LCUAO 
region with £ < < 1. 

As already discussed, ordinary MO correlation is 
usually replaced for outermost-electron MO's by 
pseudo-correlation in R ranges where major CM is 
required. For Rydberg states of even-electron mole
cules the onset of major CM depends mainly not on £ 
of the Rydberg MO but on £ for the valence-shell 
electrons of the core. CM becomes important when 
£ for these reaches perhaps about 1.5 or 2; i.e., R 
reaches about 1.5i?e or 2Re. At these R values, £ 
for Rydberg MO's, even for those of smallest n, is 
already small. Thus for Rydberg states, major CM 
normally sets in already in the UAO region of the 
Rydberg MO, long before its LCAO region is reached. 
For H2, the beginning of major CM is estimated to 
occur for Rydberg states, ltrgnx (nx = Rydberg MO) 
at about 1.8 A, or £ about 0.4 for 2s or 2px Rydberg 
MO's and about 0.2 for 3s, 3p7r, or 3dtr,7r,<5 MO's. 
The discussion in this section has been nearly entirely 
in terms of homopolar molecules. However, rather 
similar considerations apply to heteropolar molecules. 

For odd-electron molecules with core at Re in a closed-
shell MO state, major CM at large R affects the valence 
MO's in the core, yet leaves any Rydberg electron 
essentially independent so that ordinary HeH+-like 
correlation can occur; hence, now the Rydberg MO 
and its T remain significant as R -*• 00. For example, 
the lowest excited 2 state of NO is a Rydberg state of 
structure (NOVS+)Ss5

2S+ at all R values, if we ignore 
the homogenous perturbations (see section 3) which 
must occur during the successive crossings of its poten
tial curve by those of nine valence-shell 2 S + states on its 
way out to dissociation into N(p3,4S) + (0+,p3,4S)-
3s,6S. During the passage to large R values, the NO+ 

core has to go through radical CM changes. 

5. Dissociation Correlations for Rydberg 
States of H2 and He2 

It might be thought that the complication of major 
MO-CM at large R discussed in section 2 would not 

(28) Cf. R. S. Mulliken, / . Am. Chem. Soc, 72, 4493 (1950), where 
the parameter £, originally introduced in ref 6 but poorly named, was 
renamed. 
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occur for Rydberg states, and that one could assume 
that the molecular core and the Rydberg electron could 
be treated as changing independently thoughout the 
range of R from 0 to co. If that were true, the T 
and n* values for a Rydberg MO could properly be 
followed through all the way. Such a correlation 
would correspond to the usual practice of finding 
immediate significance in a direct comparison of T 
and n* values for a Rydberg MO taken near i?e with the 
T and n* values of the Rydberg AO of one of the atomic 
dissociation products of the molecular Rydberg state in 
question. However, as was pointed out in section 4, 
such a comparison represents only a pseudo-correlation 
in the case of even-electron molecules. Instead, one 
should look for relations to united-atom T and n* 
values. 

To illustrate, let us first consider the lcrgl7ru,
3ITu 

and 1IIu and the lo-gl7rg,
3IIg and 1II8 states of H2, each 

of which is the lowest member of a Rydberg series of 
states.29 Near Re, which is close to that of H2

+, the 
(unnormalized) forms of the SCF MO's can be de
scribed as 

\<rs « (lsa + X2p01>2 + (lSb+ X2pffb)
1-8 = 

ffgls1-* + X^p 1 - 2 

1TTU~ 2PTTU A
( I / ! ) « ^u2puA(I/!) (2) 

lTTg « 3d7r U A
( I / j ) « 7rg3dUA

(1/s> 

(The superscripts in parentheses refer to orbital ex
ponents.) As is shown by their experimental n* 
values, the l7ru and l7rg MO's undoubtedly resemble 
united-atom (He) Rydberg AO's, which here are nearly 
H-atom-like. 

Antisymmetric SCF-MO approximation wave func
tions (unnormalized) corresponding to the above four 
states can be written as follows. 

¥Mo(lffgl Tw1Hu or 3nu) = [lffg(l)liru(2) ± 
l<Tg(2)lTru(l)][*sor*T] 

(3) 
^MO(WlTTg 5

1 I Ig Or 3IIg) = [ l (T g ( l ) l 7Tg(2) ± 

1(Tg(^g( I )Pr 3 or * T ] 

In eq 3, 1 and 2 refer to the two electrons, and the + 
or — signs go with the singlet or triplet spin factors 
•^s or ^ T , respectively. For R near Re, the briefly 
symbolized MO's in eq 3 are described in eq 2. But as 
R is increased, their forms must change; they may be 
expected to behave very much like those of H2

+ (cf. 
section V,l) except that the effective Z here is always 
near 1 instead of being 2 for R = O and changing to 1 
as R -*• co. Most notably, the 1 wg MO of H2 must 
change from the 7rg3d LCUAO form to the 7rg2p 
LCAO form when R becomes sufficiently large.27b 

More specifically, 17ru and l7rg at intermediate R 
values must assume the forms 

1TTU = awa2p{n + biru3d«"> + .. . 
(4) 

l7rg = a'irg3d«'"> + b,Trs2^"') + ... 

Then as R -*• <*>, the (always relatively minor) 7ru3d 

(29) The 3IIg state has been the subject of a recently published inten
sive study,5" yielding an accurate potential curve from R = R1. to <*>. 
The present more qualitative discussion seems justified as providing 
added physical insight. 

term in l7ru must disappear again while in l7rg the 
7rg3d term which is predominant at smaller R must 
disappear leaving only 7rg2p. 

In addition to changes in the forms of the MO's, 
other changes from eq 3 must also occur as R increases. 
In view of the noncrossing rule (and assuming, as 
calculations show to be justified, that relevant non-
diagonal matrix elements are substantial), we know 
that the lowest energy 1IIu, 3nu, 1ITg, and 3ITg states of 
H2, which at Re are given by eq 2 and 3, must correlate 
as R -*• a= with the lowest-energy LCAS states of the 
same species, whose (unnormalized) wave functions are 
as follows. 

*LCAS(unUiS) = {[lsa(l)2P7rb(2) ± lsb(l)2P7ra(2)] ± 

[lsa(2)2P7rb(l) ± lsb(2)2P7r a(l)]}[^ sor^T] (5) 

Here the ± signs between the two pairs of brackets 
belong with V5 and tyT, respectively; the ± signs in the 
middle of each pair of brackets correspond to the n u 

and rig states, respectively ( + for u, — for g). For 
later reference to the four LCAS states of eq 5, the 
following brief symbols9 will be found convenient. 

(lS-2p7T)u = ^LCAS(1IIu), ( IS -2PTT)8 S= ^LCAS(1IIg) 

(6) 
(lsX2p7r)u = ^LCAs(3IIu), (lsX2P7r)g == *LCAs(3ng) 

One might be inclined to call the states of eq 5 and 6 
Heitler-London-type states, but this is probably inad
visable since the interactions are more complicated 
than for true HL states. 

To bridge the gap between eq 3 and 5, it is necessary 
to introduce CM, which at Re is no doubt relatively 
small. Let us begin with eq 3 and mix lcrul 7Tg1

3IIu 
with lo-gl7ru,

3riu and lcrul7ru,sng with l(TglTrg,
3ng, and 

similarly for the corresponding singlet states. For the 
four admixed states in SCF-MO approximation, equa
tions identical with eq 3 are valid except that g and u are 
exchanged for every MO. Since l<ru is strongly anti-
bonding, these states must be high-energy states, al
though it appears that they should have stable minima 
at relatively large R values (cf. footnote 13 of ref 3). 
For the mixed states 

^ ( ' • • n u ) = {[l0-g(l)l7Tu(2) ± l<Tg(2)l TTu(I)] + 

a[l<ru(l)lTTg(2) ± l f f u ( 2 ) l T r g ( l ) ] ) [ * s o r ¥ T ] 

(7) 
V ^ 3 I T g ) = {[l0-g(l)l7Tg(2) ± l0-g(2)lTTg(l)] + 

/3[1O-U(1)1TTU(2) ± l(Tu(2)l7ru(l)])[*sor*T] 

witha — O, /3^-0asJ?-*-0. 
In eq 7, the forms of the MO's lag, l<ru, ITTU, and lTrg 

must, as already noted, change continuously as R 
goes from O to «= (cf. eq 4 for the 7r M O ' S ; for the 
a MO's, o-g goes from the o-gls LCUAO form at O to the 
ffgls LCAO form at co with some admixtures (cf 
eq 3) at intermediate R values, while <ru goes from the 
o-u2p LCUAO or 2po- UAO form at R = O to the 
o-uls LCAO form at R = co, with some other admix
tures at intermediate R values. The behavior of the 
MO's (especially l7rg) at intermediate R values has 
interesting consequences to be discussed below, but 
the complete picture can be presented correctly, and 
more lucidly, if at first we skip from R = i?e to R = °° 
and introduce in eq 7 LCAO expressions for the MO's 
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which are good approximations at large R, namely 

(Tg,(Tn = l S a ± lSb! Tu5ITg = 2p7Ta ± 2p7Tb (8) 

On multiplying out, one readily verifies that, for a = 
— 1 and B = 1, eq 7 reduce to eq 5.30 One concludes 
that a and B both change gradually from small negative 
values at Re to — 1 at R = <». 

On the other hand, for a = + 1 and B = + 1 , one 
gets30 

^ionicC^Hu.g) = {[lS a( l )2P7T a(2) ± lS b ( l )2P7T b (2)] ± 

[lsa(2)2P7ra(l) ± lsb(2)2p7rb(l)]}[* sor*T] (9) 

The wave functions of eq 9 are recognized as corre
sponding to H+ + H-(^p7T,1 '3H). At R = oo 
these are only virtual states, since excited ls2p states 
of H - can scarcely be stable,31 but at smaller R 
values the stabilizing influence of H + on excited H -

should convert them into real states. 
One can now invert the reasoning that led from eq 7 

to 5 and 9. If we start from R = =° and proceed 
toward Rt, we have at first the LCAS group of four 
states, 1,3ng,u, and a higher-energy group of virtual ion-
pair states of the same types. As R decreases, the 
wave functions of states of like species in these two 
groups mix more and more, both because of increasing 
matrix elements and because of decreasing energy 
separations. Thus we have, for each of the four 
species 

* = ^LCAS ± 7*ionic (10) 

If we approximate ^LCAS and ^ion by eq 5 and 9, 
respectively, with the AO's Is and 2pr assumed the same 
in * i o n as in ^LCAS. and assume eq 8 for the MO's, 
then for y = + 1 we obtain the familiar l<rgliru,

haIIu 

and lo-glWg,h3Ug Rydberg states as in eq 3, while for 
7 = —1 we obtain the high-energy lo-u l^g,1,3II11 and 
lcru 17Tu1

1^3IIg predicted Rydberg states with repulsive 
cores (cf. footnote 13 of ref 3). However, although we 
have used eq 7 and 8 to obtain these conclusions, we 
must recognize that concurrently with the growth of y 
the forms of the MO's must depart from those of eq 8, 
the most radical departure being the change of the 
Ix8 MO from its large R form 7Tg2pSA to its small R 
form 3dirg (cf. eq 4).32 

At this point it becomes relevant to refer to theoretical 
calculations which have been made on the lowest 
1^n11 and 13IIg states of H2. Already in the early 
days of quantum mechanics, Kemble and Zener com
puted potential curves corresponding to the four pure 
LCAS functions 5 or 6, using free-atom (Z = 1) Is 
and 2p7r AO's. The calculation showed stable attrac
tive 3IIU and 1IIu states but strongly repulsive 3ng 

and 1II8 states. 

(30) In the passage from eq 7 with a < 0 and /3 < 0 to the limiting 
case of eq 5, we may assume that Is and 2pir of eq 8 go over to H-atom 
AO's as R ->- =o. In the passage from eq. 7 with a » +1 and /3 > > 
+ 1 (which represent the higher energy 1^n11 and ' '3II8 states) to the 
limiting case of eq 9, we must in the limit assume quite different Is and 
2p7r AO's in eq. 8. However, we are actually not much interested in 
eq 9, since they become completely unrealistic as R —• °°. 

(31) C. L. Pekeris, Phys. Rev., 126, 1470 (1962), has shown that the 
ls2s, 3S and 1S states of H - are unstable or at best barely stable. 

(32) Although the lo-u MO must also change its form from ffulssA to 
2puuA as R -* 0, the change toward the UA form cannot have pro
gressed nearly as far, at Re of the Rydberg states (near Re, of Hs+), as for 
lirg, and we shall in the present discussion neglect this extra complica
tion and the related complication that <rgls does not retain quite the 
simple o-gl s form near Re. 

Let us try to understand these results, beginning with 
the H11 states. For them, the agreement of the simple 
(i.e., free-atom Is and 2p7r) LCAS calculation with 
experiment is roughly as good as for the 1 S 8

+ normal 
state of H2, where LCAS is HL. In the case of the 
latter state, as is well known, the o-gls

2 MO structure 
(which is the same as a 50:50 linear combination of 
HL with ionic wave functions) gives nearly as good 
agreement as the HL when Is AO's with Z = I are used 
throughout. Better agreement with experiment is ob
tained for a linear combination which is predominantly 
HL but to some extent ionic (cf. eq 10 with 0 < y < 1), 
or, alternatively (and equivalently), for a linear com
bination of CgIs2 with some <ruls

2. These agreements 
with experiment are further improved if Is AO's with 
Z ^ 1 are used. As has been pointed out by Slater,33 

the HL and ionic AO-type functions, though orthogonal 
at R = oo, are highly nonorthogonal at Re of state 
N of H2. In fact, they are then much more nearly 
alike than different.34 Actually this is not surprising 
when one notes that the HL and ionic, and indeed also 
the MO and UAO, functions become formally identical 
at R = 0. 

Analogous relations hold for the ls-2p7r and 
IsX 2p7r, ^3IIu LCAS states (see eq 5 and 9 for the 
LCAS and ionic functions) and make understandable 
the rather good agreement of the simple LCAS ^ ' s 
(still better if increased Z is used for Is) with experiment 
without inclusion of any ^ ionic. In other words, 
addition of ^i0nic (cf eq 10), because to a rather large 
extent it is the same as ^LCAS. does not contribute to 
improving SI>LCAS as much as, on the basis of the dis
cussion preceding eq 10, one might have naively ex
pected. Or to put it in still another way, Is2p7r,nu 

LCAS functions apparently are not bad approximations 
to the correct Vs for the Rydberg states whose MO 
configuration description is lo-gl7ru. Nevertheless, if 
SCF MO's are used for lcrg (which is nearly the same 
here as in H2

+) and for l7ru (rather nearly like a 2p7TuA 
AO with Z = 1), the lag l Tr11,

1'8II11 MO-type ^ ' s are 
undoubtedly very considerably better than the LCAS 
at R1., and at Re doubtless need only relatively little 
CM to make them exact. As R -*• 0, however, the 
LCAS, ionic, MO, and UAO single-configuration 
functions all become formally identical, in the same 
way as for the normal state of H2. 

Turning now to the lowest-energy 3IIg and 1IIg 
states, we know experimentally that at R values near 
Re of H2

+, these are Rydberg states with stable minima 
(here they are well describable by the MO configura
tion lo-g3d7r), while according to the noncrossing rule 
their wave functions must as R -*• « go over to the 
182PTT1

113IIg LCAS functions. The v = 0 levels for 
these states are only 0.66 ev below the energy of the 
separated (Is + 2p) atoms, and a consideration of the 
experimental constants of the potential curves indi
cates that the energies rise to a maximum with in
creasing R before descending to their Is + 2p asymp
totes as R -» a=.35 Since the Is2p7r, 1^8IIg LCAS 

(33) J. C. Slater, J. Chem. Phys., 19, 220 (1951); and "Quantum 
Theory of Molecules and Solids," Vol. I, "Electronic Structure of Mole
cules," McGraw-Hill Book Co., Inc., New York, N. Y., 1963. 

(34) The extent of nonorthogonality depends, of course, on whether 
free-atom Is AO's or modified AO's are used. 

(35) See ref 3, footnote 13. The discussion in ref 3 refers primarily 
to He2, but analogous considerations apply for most of the Rydberg 
states of H2 (see Table IV below for data on both). 
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functions give only pure repulsion curves, something 
more general is evidently required. 

Browne4b computed approximate 1II8 and 3II8 

potential curves using as a trial function a linear com
bination of Is2p7r and Is3d7r LCAS functions. 

^( 3n g ) = c*(lsX3d7r)g + rf*(lsX2pir), 

^(1IIg) = c'¥(ls-3dir)B + rf'¥(ls-2pir)g 

(He also included Is3p7r functions, but their effect was 
relatively minor; it is nearly the same27a as merely 
adding 2pir with a modified scale factor.) At large 
R, c,c' -*• 0 and d,d' -*• 1, while at R values near Re 

of H2
+, c,c' approach 1 and d,d' become small. The 

computed energy goes over a maximum at R near 2 A, 
with a minimum at R roughly equal to the experi
mental Re (1.06 A) of the lcrg3d7r Rydberg states, 
although considerably higher in energy. The existence 
of a maximum in the 3ng curve has also been confirmed 
by the accurate calculations of Wright and Davidson.53 

Thus with the double LCAS functions of eq 11, 
there is a closeness of agreement with experiment 
similar to that found for the ''3IIu states using the 
Is2p7r single LCAS functions. The fact that moderately 
good agreement with experiment and with expectations 
for the MO wave functions lcrg3d7r, 1^IIg is obtained 
without adding ionic terms as in eq 10 is evidently to be 
explained in the same way as for the 1,3IIU states. 
Namely, while inclusion of the corresponding ionic 
terms should lead to marked improvement, the strong 
nonorthogonality of the former to the LCAS terms 
enables the latter alone to go far36 toward representing 
the accurate wave functions. However, while for the 
normal state of H2 eq 10 with a relatively small y 
minimizes the energy, it seems clear that y values ap
proaching + 1 for l i 3nu and —1 for 13IIg would be 
best for the Rydberg states, which are much more 
accurately representable by a single MO configuration 
(lc7-g2p7T or l<rg3d7r) than in the case of the normal state. 
It is now evident that eq 10 gives good MO wave func
tions for the lowest '• 3nu and '• 3II8 Rydberg states if for 
^APAS w e use (Is2p7r)u functions for the 13IIu states 
but use the double LCAS functions of eq 11 for the 
1^3IIg states, and if at the same time we let ± 7 change 
from 0 at large R to values near ± 1 near the Re values 
of the Rydberg states. (Further, the f values for the 
AO's, especially Is, must not be left at their free-atom 
values, but must be readjusted to minimize the energy.) 
In contrast to those for the normal and the 1,8IIU 

states, the 113IIg LCAS functions which are valid as 
R -+• 00, and the corresponding ionic functions, do not 
now become formally identical with the MO and UAO 
functions as R -*• 0. 

Reversing the argument used above and proceeding 
outward from Re to large R values, we may start again 
with eq 7. If now (as was clearly what we should have 
done) we substitute eq 4 for liru and lirg in eq 7, we 
see that as a and /3 change from 0 toward — 1 , eq 7 
can reduce for the 1^3IIg states approximately to the 
double HL form of eq 11, with d at first large and c 
small as R increases beyond jRe, but d decreasing and c 

(36) When recognizing the nonorthogonality of corresponding LCAS 
and ionic terms except as R -* oo, it is desirable to point out that the 
LCAS forms (ls2px)g and (ls3dir)g used in eq 11 also are nonorthogonal 
except as R -* °=; likewise that the LCAO forms irg3d and 7rg2p (like
wise 7ru3d and jru2p) in eq 4 are nonorthogonal except as /? -*<= ; 
similarly (ls2s)g and (ls2po-)g, and (ls2s)u and (ls2po-)u. 

increasing as R increases, until d -*• 0 and c -*• 1 as 
R -*• 00.37 i t s e e m s likely that the R values at which 
c = d and c' = d' are near the maxima of the respec
tive potential curves. 

If the argument of the preceding paragraph using 
eq 7 and 4 is applied to the 3nu and 1IIu states, one 
concludes that their wave functions should be better 
approximated at intermediate R values by the double 
LCAS forms 

*(3nu) = / * ( 1 S X 2 P 7 T ) U + g*(lsX3d7r)J 

^(1Hu) = / f ( l s - 2 p i r ) „ + g'*(ls-3d7r)uj 

than by the simple forms wi th / = / ' = 1 and g = g' = 
0. However, the improvement here is relatively minor,38 

in contrast to the essentiality of the corresponding 
improvement in eq 11 for the l- 3ng states. 

The procedure just used in approximately deriving 
the double LCAS functions 11 and 12 from the MO 
+ CM equations (7) by substituting double LCAO 
expressions as in eq 4 for the MO's can be applied 
equally well to all Rydberg states of H2. For each 
Rydberg state of configuration lo-gmXp (where p is the 
parity (g or u) of the Rydberg MO mXp) and for its 
CM complement lo-umXq (where q is the parity opposite 
to p), the appropriate double LCAO expressions for 
mXp and mXq, taken to be formally the same as for 
like-labeled MO's of H2

+ (see V,l), can be written down 
in the manner of eq 4 and substituted into the proper 
analogs to eq 7 to yield double LCAS functions analo
gous to eq 11 and 12. 

Results of this procedure are collected in Table II 
for many of the lower-energy Rydberg states of H2 

and for the valence-shell states. Only those LCAS 
functions (in one case also the (ls2)u ionic APAS) 
are listed which are believed to be necessary and suf
ficient to yield qualitatively correct U(R) curves. 
Guided by the H2

+ forms, LCAS expressions with 
hybrid AO's (i.e., parabolic-coordinate H-atom quanti
zation; cf. V,l) occur for large R in a number of cases. 
Alternatively, these can be viewed as double LCAS 
functions; for example, Is• 2di' is the same as 2~Vl-
(Is-2s — ls-2por). Actually in such cases the coef
ficients of the components of a hybrid LCAS function at 
large R are for one or two reasons not expected to be 
exactly those for the ideal hybrid. In fact at very large 
jR, where valence forces have become negligible, hybridi
zation is lost because first-order dispersion forces cause 
otherwise degenerate LCAS functions of different / 
to have slightly different energies;39 thus strictly 
speaking each U(R) curve must correspond asymptoti-

(37) The accurate description is more complicated because b/a for 
1TTU in eq 4 is presumably considerably smaller than b'/a' for lirg. It 
should further be kept in mind that the coefficients in eq 4 vary with R, 
also that the function pairs ir„2p and jr„3d, likewise 7rg3d and 7rg2p, are 
nonorthogonal.3e Moreover, the best values of these coefficients are 
probably rather different for the ir„ or ?rg used in the CM terms (follow
ing a or f$) in eq 7 than for those in the main MO terms. One must 
also not forget that the f values in eq 4 are different for 7ru and 7rg, and 
for the CM and main ira and 7rg's. In spite of all these complications, 
the general trend of the simple reasoning in the text seems convincing 
as a qualitative explanation of the transition to an eq 11 type of wave 
function as R gets large. 

(38) The extra terms in eq 12 correspond to the occurrence of 6ir„3d in 
liru (and of a'irg3din 1 irg) in eq 4 when substituted in eq 7. However, 
since b vanishes both as R -*• 0 and R — a> and so can never be very 
large, the related coefficients g and g' (or rather, perhaps, their squares) 
in eq 12 should never be large. 

(39) Cf. R. S. Mulliken, Phys. Rev., 120, 1674 (1960). 
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' 
Unpr 
Partly Pr 
Partly Pr 
Unpr 
Unpr 
Pr 
Pr 
Unpr 
Pr 
Pr 
Pr 
Unpr 
Pr 
Pr 

^Ttf""\ p t i f c n i ' ' 
- -IVlV-I S l a l C i • • •* 

1(TgVSg+ 

U1 X ItTu1
3Su+ 

1(Tg-I(Tu, 1 S u + 

l(Tg X 2S, 3 S g
+ 

lcrg-2s, 1S18
+ 

I ^ X 3pcr, 3Su+ 

l(T8-3pcT, 1 S u + 

l t r ^ p T r , 1 ' 3 ^ 
Iff, X 3dff, 3 S 8

+ 

lug-3d(T, 1 S / 
l(Tg3d7r, Mn 8 

lcre3d5 1^3Ag 
ltrg X 4fa, 3Su+ 

l<r,-4f<r, 1Su+ 

•— lviajur jjV_-rt.o i cr i i i s 

Rather large Rc 

l s - l s 
(lsX2p<r)u and esp. ( IsXIs) 
(ls-2pa)u and (ls2)„ 
(lsX2s)g and ( lsX2di ' )g 

( l s -2s) 8 and( ls -2di ' ) g 

(lsX3pcr)u and(lsX2di ')u 
(ls-3po-)u and (ls-2di')u 
(1S2PTT)U 
(lsX3d<7)gand(lsX2di)g 

(ls-3dtr)g and (ls-2di)g 

(Is 3d7r)g and (Is2p7r)g 

(ls3dS)g 

(lsX4f<r)u and (lsX2di)u 

(ls-4f(r)„ and(ls-2di)u 

Very 
large R 

l s - l s 
Is X Is 
(ls-2p<7)u 

(Is X 2p<r)g 

(ls-2s)g 

(Is X 2s)u 
(ls-2s)u 

(Is2p7r)u 
(Is X 2s)g 

(ls-2pcr)g 

(ls2px)g 

(Is3d5)g 

(Is X 2pcr)u 
(ls-3p(r)u 

R p m a r l f ? ^ 
xx^iiiai ^o 

VS state 
Semi-Ry state 
Semi-Ry state"./ 
g 
g,h 

e,f 
i 
J 
j,k 
i 

e 
a Pr and Unpr refer to states with a promoted or unpromoted outer MO, respectively. For a promoted MO, the principal quantum num

ber n for the UAO is larger than for the AO of the pseudo-correlated LCAO expression or, what is the same, for the outer AO of its LCAS 
dissociation product (see V,l for definitions and discussion of promoted and unpromoted MO's in H2

+). b A UAO symbol is used for Ryd-
berg MO's, since these at Re are close to being UAO's. Singlet and triplet states are given separately in those cases where their asymptotes 
as R —>• oo are different; otherwise they are given together. c The first of the two LCAS functions listed in this column is that which is pre
dominant at small R; the second is that predominant at large R. For unpromoted states which need two LCAS terms, these are partly identical. 
For example, in the 1(7,2S,1-3S8

+ states (these are actually the only examples given in Table III; others would include 3s, 2p7r, 4d6, . . .), 
the LCAS function (ls2di')g is the same as 2_1/![(ls2s)g — (ls2per)g] and so is partly identical with the (ls2s)g term. The pair of LCAS functions 
is thus equivalent to the pair (ls2s)g and (ls2po-)g, but with higher weight for the former and opposite signs for the two. For SAO's with n > 
2, increasingly complicated hybrids are needed for the large R LCAS function in this column. d VS means valence state. Ry means Rydberg. 
"The three 1Sn

+ states which at small R are lo-g-l<r8, lo-8-3p<r, and lov4f<r need to be considered together, since they become strongly 
mixed at large R values because of avoided crossings at about 10 au of the (U)R curve of the H+H - APAS (ls2)u function (which on the basis 
of the procedure outlined in the text should be the predominant component for the first-named of these three states) with the U(R) curves of 
the (ls-2di')u and (ls-2di)u functions, which should be the predominant components of the other two of the three states (see J. T. Lewis, 
Proc. Phys. Soc. (London), 68, 632 (1935), for relevant calculations on this mixing). If crossing could have occurred without mixing, the 1 as • 
1(Tu curve would have dissociated smoothly following (ls2)u to H+ plus H-(Is2), and the other two following (ls-2x)u to H(Is) plus H(2x), 
where x is 2s for one and 2pa for the other; if first-order dispersion terms (see text) had been absent, x would be 2di' for lirg-3pcr and 2di 
for l<Tg-4f(T, but because these terms are present and cause (Is-2p(7)u to be lower in energy than (Is-2s)u at very large R (see ref 54), x would 
have to be 2p<r for Ia8-3po- and 2s for l<rg-4f<r. But since actually there is avoided crossing accompanied by profound mixing (see Lewis, 
above), the 1 (T8-I(Tu U(R) curve beyond the crossing point (that is, for R > 10 au) must go to dissociation via the l(rg-3per asymptote, namely 
(ls-2di')u at large R, going over to (ls-2pcr)u at very large R. This forces the l<r8-3p(r curve to take over the asymptotic behavior properly 
belonging to the l<r8-4f<r curve, namely, (ls-2di)u at large/? going over to (Is- 2s)u at very large R. Finally, the lcrg-4fi7 curve, after coming 
down toward its proper asymptote, is forced to start up again, following the (ls2)u ion-pair curve; however, further mixing with 3-quantum 
1Su+ LCAS functions will permit it to dissociate at that level, probably to (ls-3dtr)u. ' Experimentally (T. Namioka, J. Chem. Phys., 43, 
1636(1965)), the 1(T8-IiTu U(R) curve goes smoothly toward dissociation at the 2-quantum level, as would be expected from the discussion in 
footnote e, while the l<Tg-3po- curve shows a normal shape near Re but at larger R goes abnormally slowly toward dissociation at the 3-
quantum level. This somewhat peculiar behavior of the l<rg-3po- curve is consistent with the discussion in footnote e. (The analogous 
1 (Tg2I<Tu • 3p<r curve of He2 has a maximum at moderately large R; see below). The nature of the wave function of the 1 <rg • 1 aa state as a 
function of R has been extensively discussed in the literature on the basis of approximate theoretical calculations (see C. S. Tschudi and N. V. 
Cohan, ibid., 34, 401 (1961); A. Batana and N. V. Cohan, Mot. Phys., 7, 97 (1963); P. Phillipson and R. S. Mulliken, J. Chem. Phys., 33, 
615 (1960), and earlier references given in these papers). A very recent, not yet published, very accurate James-Coolidge type calculation of 
the potential curve out to 12 au by W. Kolos now permits definite conclusions. A decomposition by Kolos (private communication) of his 
wave function into a linear combination, ci(ls-2s)u + c2(ls-2po-)u + c3(ls

2)u, of three nonorthogonal APAS functions plus an ortho
gonal residue U, where 2s and 2ptr are free H-atom AO's (Z = 1) while Is in (ls2)u is an approximate H - ion AO (Z « 0.7), shows (ls-2pcr)u 
strongly predominant at small R values, as expected, and (ls2)u predominant from about 3 to 6 au, again in agreement with expectations from 
Table III. The component (ls-2s)u is minor until large R values; its coefficient C1 is opposite in sign to c2 suggesting that the above linear 
combination be rewritten as ci'(ls-2di')u + c2'(ls-2po-)u + c3'(ls2)u + ^- Between 10 and 12 au, c / falls rapidly, while c2' and —c/ rise. 
At 12 au -Ci ' > C3' > C2' (or in terms of the c's, C2 > — o > c3), in agreement with the expectations of Table III and footnote e, namely, 
(ls-2di')u predominant at large R beyond the point of avoided crossing with (ls2)u near 10 au, but finally giving way to (ls-2pcr)u at very 
large R because of the first-order dispersion effect. « See comments in footnote c. * See discussion in section 3 (and cf. ref 14) on the two 
avoided crossings, one at rather small R, one near 10 au, both by the H+H - state lcruVSg

+ (MO description) or (ls2)g (APAS description). 
At large R well beyond 10 au, these disturbances should have subsided. *' See comments in section 3 on London dispersion effects on the 
shape of the 1II U(R) curve at large R. > Crossing with l(rg3s occurs close to Re for the 1S8

+ and at somewhat smaller R for the 3S8
+, but 

interaction is weak (see section 3 and ref 12, also section 4 and ref 20). * Avoided-crossing interaction with lau
2 at rather small R and again 

at large R (hence, indirectly also with 1(T8 • 2s) must cause complications similar to those in lo-8 • 2s (see footnote h). 

cally to a single pure / LCAS function; such asymp
totes, making use of the noncrossing rule and theo
retically calculated first-order dispersion energies, are 
listed for "Very large R" in Table II. 

For He2, dissociation relations similar to those for H2 

exist for the Rydberg states,34 except that the compli
cations which occur for the 1 S 8

+ and 1S11
+ states of H2 

due to avoided crossings with H + H - (ls2)g and (ls2)u 

curves have no counterpart for He2. A table analogous 
to Table II for H2 can be constructed by the same kind 

of procedure used there to go over from MO functions 
at small R to (usually double) LCAS functions at 
rather large R and single LCAS functions at large R. 
The procedure is simpler for He2 because first-order 
dispersion effects (although not absent for some states) 
are not needed as in H2 to carry over hybrid AO into 
pure / functions as R -*• » . 

As an example, the MO states IcTg2ICr11ITrU1
13IIg 

and IcTg2ICrUlTTg1
113IIu must respectively mix, on the 

way to dissociation, with l<rglcru2
 ITT8,

 1^ 3IIg and l<rg-
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Table HI. Dissociation Correlations for He2 

MO state 
-Major LCAS terms"-

Rather large R Large R 

I a 8
2 I c T u W 

I a 8
2 W s 1

1 ^ Z u + 

lCTg
2l(7u2px,1.3ir i, 

l<Tg2l<ru3p(r,1.32g
+ 

1C8
2I o^do- , 1 . 3 S 1 1

+ 

Ia 8
2 Io-JdTr 1 MnU 

1 (T8
2I <ru3do,1.3AU 

108
 2I ovtfcr , 1 . 3S 8

+ 

Is2Is2 

(Is2ls2s)uand(ls2ls2di')u 
(ls2ls2pir)g 

(1S2 / u 

(Is2IsSdO)? 
(Is2ls4fa)8and(ls2ls2di)g 

(ls2ls2s)u 

(1S21S2PTT)8 

(ls2ls2s)8 

(ls2ls2p<r)u 

(1S21S2PT)U 

(ls2ls3do)u 

(1S21S2P<T)8 

° In those cases where an LCAS form with a hybrid AO is indi
cated at intermediate R, the hybrid AO is doubtless not the ideal 
50:50 hybrid indicated (or with other ideal ratios for LCAS's with 
hybrid AO's with n > 2), but rather should be weighted toward the 
AO which is alone present as R -*• » . However, earlier calculations 
by Browne4" on the S states are in agreement with the conclusion 
reached here that hybrid-AO LCAS's are needed. 

additional LCAS states in which 3d7r is substituted for 
2p-r. Table III summarizes the dissociation correla
tions which one arrives at for these II and other states of 
He2. 

It is of interest now to review what is known of the 
dissociation energies D0, and the heights of the dis
sociation maxima in those cases where they occur, for 
the molecules H2 and He2. This is done in Table IV, 
which shows approximate theoretical values for the 
heights (H) of the maxima above the lowest vibrational 
level (v = O) of each state and then (h) above the energy 
of the dissociated atoms; in the absence of a maximum, 
H = D0 and R = O. In a few cases the values of D0 

are notably small, thus (in view of evidence of normal 
U(R) shape near Re) pointing most strongly toward the 
existence of a maximum. For the 3pa,32g

+ state of 

Table IV. Maxima and Minima in H2 and He2 Rydberg-State Potential Curves 

State H 
-H2 energies, 

h 
ev°-

D0(Io) State 
— H e 2 energies, e v L 

H h DlXo) 

3do,'A8 

SdTT1
1IIg 

Sd(T1
1S8

+ 

3PTT1
1IIu 

3S 5
1 S 8

+ 

3P(T1
1Su+ 

2PTT1
1Hu 

2S 1
1 S 8

+ 

3d5,3A8 

3dTT,3n8 

3d(7, 3S 8
+ 

3p TT1
3IIu 

3S 1
3 S 8

+ 

3P(T1
3Su+ 

2PTT1
3IIu 

2 S 3 S 8
+ 

2.50 
(0.96) 
(0.98) 
2.44 
2.43 
0.90 

26 
25 
53 

1.07 
10 
59 
58 
32 
79 
76 

0 
( 0 3 > 
(0.3)' 
0 
0 
0* 
0 
0 
0 
0.41« 
0.41« 
0 
0 
0 
0 
0 

2.50 (3d«) 
0.66 (2PTT) 
0.68 (2p<r) 
2.44 (3d7r) 
2.43 (3cr) 
0.90 (2s) 
2.26 (2pTT) 
2.25 (2s) 
2.53 (3d5) 
0 . 6 6 ( 2 P T T ) 
0.69 (2s) 

59 (3PTT) 
58 (3ptr) 
32 (2s) 
79(2px) 
76 (2P(T) 

1Au 
1IIu 
1 S u + 

1 H 8 
1 S u + 

1 S g + 

1Hg 
1 S u + 

3Au 
3IIu 
3Su + 

3IIg 
3 Su + 

3 S 8
+ 

3 n 8 
3Su + 

2.18 
(0.67) 
[0.7?] 
2.25 
2.18 
(1.4)" 
2.35 
2.19 
2.19 

(0.48) 
[0.5?] 
2.21 
2.06 
(1.0)" 
2.24 
1.69 

0 
(0.3)/ 
[0.3?]» 
0 
0 

(0.5)" 
0 
0.17' 
0 

(0.35)/ 
[0.35?]» 
0 
0 

(0.6)" 
0 
0.14* 

2.18 (3d5) 
0.37 (2pi) 
0.39 (2p<r) 
2.25 (3PTT) 
2.18 (3s) 
0.84 (2s) 
2.35 (2PTT) 
2.19 (2s) 
2.19 (3d5) 
0.13 (2px) 
0 . 1 6 ( 2 P < T ) 
2.21 (3px) 
2.06 (3s) 
0.34 (2s) 
2 .24(2PTT) 
1.69 (2s) 

0 The D0 values (energies of dissociation from the v = 0 vibrational level) are based on the theoretically known D0 of H2
+ (2.648 ev), 

together with the known excitation energies T0 of the v = 0 levels of the various states, and the assumption of dissociation in accordance with 
the noncrossing rule, except that crossing of 3S1

3S8
+ and 3dcr,3S8

+ is assumed to occur so that the former dissociates to give one n = 2 and 
the latter to give one n = 3 H atom. The T0 values are mainly those given in Herzberg's book on diatomic molecules, with some updating. 
The h and H values are the heights of the maxima (if any) of the potential curves above, respectively, the dissociation asymptotes and the v 
= 0 levels of the states. b The statements in footnote a also apply here, except for the value of D0 of He2

+. Although this is not known 
exactly, the value 2.20 ev has been used here. This is the best present estimate, based on the rather accurate theoretical calculations of P. A. 
Reagan, J. C. Browne, and F. A. Matsen, Phys. Rev., 132, 304 (1963), who find 2.24 ev as a lower limit for De, from which J. C. Browne 
(private communication) estimates that De is close to 2.30 ev. For De = 2.30 ev, D0 is 2.20 ev. c For SdTr1IIg1 Browne's4b theoretical cal
culations gave h = 0.451 ev. Assuming this value to be too large by 0.15 ev(c/. footnote e), 0.3 ev as given above is obtained. Then assum
ing equality of h for 3da and 3dTr to exist as has been shown for the triplet states, the estimated value of 0.3 ev for Sd(T1

1S8
+ is obtained. 

d From experimental determination of the potential curve; T. Namioka, / . Chem. Phys., 43, 1636 (1965). The curve has an abnormal shape, 
but unlike its counterpart in He2 has no maximum. « From the accurate theoretical calculations of ref 5. In the case of 3d<r,3S8

+, crossing 
of 3s(T and 3da is here assumed.12 For 3dTr,3n8, Browne, in a less accurate calculation,4b found h = 0.55 ev, 0.15 ev larger than by ref 5a. 
I From theoretical calculations of ref 4b, 1IIu has a maximum of height 0.46 ev and 3n a of0.60 ev. Subtracting 0.15 from each (cf. footnotes 
c and e), the estimated values given above are obtained. » There seems little doubt that maxima occur in these cases3 as in all the other 
analogous cases where computations have been made. " Approximate theoretical calculations by Browne4" gave h = 0.7 ev for 3pa, 1Sg+ and 
0.8 ev for 3 S 8

+ . These are probably {cf. footnote e) too large, and an estimated allowance for this gives the values listed in the table. Vibra
tional levels of the 3p<7,3S8

+ state up to 0.58 ev (v = 4) and for the 3Da1
1Sg+ up to 0.86 ev (v = 5) have been observed experimentally by 

M. L. Ginter [J. Chem. Phys., 42, 561 (1965)], and the observed levels in each case extrapolate to convergence at an H value near that given 
in parentheses in Table I. * These theoretically computed maxima (R. D. Poshusta and F. A. Matsen, Phys. Rev., 132, 307 (1963) for the 
3 S 8

+ and ref 4a for the 1S8
+), supported also by experimental evidence, are of an unexplained type unless perhaps the requirement that * 

include an LCAS with di ' AO at intermediate R values, as compared with 2s at large R values (cf. Table III), somehow introduces repulsion 
at large R values. 

10-U2ITTU1
113IIU (each l7rg having an LCAO form which 

changes, as R increases, from mainly 7rg3d to mainly 
7Tg2p), in order to dissociate into the corresponding 
118IIg,u LCAS states (briefly symbolized, lsa

2lsb2p7rb 

± lsb
2lsa2p7ra with + for n g and — for nu , respec

tively). Or, conversely, in order to obtain the above-
mentioned MO states, the LCAS states just mentioned 
must mix with corresponding virtual He+He - states 
(briefly symbolized, lsalsb

22p7rb ± lsblsa
22p7ra, 

113ITg111), and in the case of the l i 3nu states also with 

He2, Ginter has observed actual vibrational levels up to 
0.58 ev above the v = 0 level, hence 0.22 ev above the 
dissociation asymptote if the value D0 = 2.20 ev for 
He2

+ is correct; the observed vibrational levels, more
over, converge toward an H value of 1.0 ev in agree
ment with the approximate theoretical value (cf. 
footnote h in Table IV). 

In the event of an avoided crossing (cf. section 3) of an 
attractive and a repulsive potential curve of the same 
electronic species, a maximum occurs in the lower of the 
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two resultant curves. In the case of the promoted 
states in eq 11 and Tables II and III one can, if one 
wishes, attribute the potential maxima described in 
earlier paragraphs to avoided crossings between 
repulsive and attractive LCAS potential curves. For 
example, for H2 one has a strongly repulsive LCAS 
curve for (ls'2p7r)g of eq 11 and a corresponding pre
sumably moderately attractive curve for (ls-3d7r)g, 
and similarly for the analogous triplet H2 and the 
corresponding singlet and triplet He2 curves.40 Thus 
for H2 or He2, avoided crossings of the separate poten
tial curves of the two LCAS states,36 which are re
quired for the cases which correspond at small R to 
promoted Rydberg MO's, can be held responsible for 
the potential maxima in these cases.41 Here the 

(40) An interesting minor point, however, is that the (ls2ls2p<7-)u and 
probably the (ls2ls3dir)g Hes attractive curves are at first (at large R 
values) repulsive (c/. ref 4a), and become attractive only at smaller R 
values. This behavior can be correlated phenomenologically with the 
fact that the overlap integral S changes sign as R decreases in the cases 
of 5(2p<7a, 2p<7b) and S(3d7ra, 3d?rb); the MO's <ru2p and irg3d involve 
negative overlap and so are antibonding at large R but attain positive 
overlap at smaller R, with S=ImR = O. It is also of interest that the 
overlap for <rg3d has positive maxima both at large R values and (S = 
1) at R = 0, but is smaller and even becomes slightly negative between, 
according to unpublished calculations by Dr. S.-I. Kwun in this labora
tory. 

(41) On the other hand, reference to Figure 1 of ref 3 for He2 might 
suggest that repulsive LCAS's such as (ls2ls2s)g and (ls2ls2pjr)„, taken 
alone, tend to go, as R decreases, into MO states with repulsive cores but 
unpromoted Rydberg MO's (l<rglo-u22s and lo-gl<r„23dir, respectively), 
whereas the corresponding attractive LCAS's (ls2ls2s)„ and (lssls2p?r)g 
definitely correlate with MO states with attractive cores and the same 

I n the investigation of reaction mechanisms, problems 
regarding the configurations of fairly large mole

cules with rigid frameworks are often encountered. 
Electric moment data have proved to be helpful in the 
solution of these problems in many instances.1-7 For 

(1) H. Kwart and L. Kaplan, J. Am. Chem. Soc, 75, 3356 (1953); 
76, 4072(1954). 

(2) J. D. Roberts, F. O. Johnson, and R. A. Carboni, ibid., 76, 5692 
(1954). 

(3) M. T. Rogers and S. J. Cristol, ibid., 77, 764 (1955). 
(4) (a) H. Krieger, Suomen Kemistilehti, B31, 348 (1958); (b) ibid., 

B32, 109 (1959). 
(5) N. L. Allinger, J. Allinger, and N. A. LeBeI, J. Am. Chem. Soc, 

82,2926(1960). 

ionic components which need to be admixed into the 
LCAS wave functions as R decreases are being ignored, 
but (as was pointed out above) because of a lack of 
orthogonality of the ionic and covalent wave functions 
the presence or absence of these ionic admixings does 
not change the qualitative characteristics of the po
tential curves. 

The discussion in this section has shown that, for 
states which are Rydberg states near Re, it is incorrect 
because of strong CM at large R values to think of the 
core and the Rydberg electron as following independent 
correlation curves as R -*• °°. However, there is no 
reason why these states need be thought of as ceasing to 
be Rydberg states at larger R values. Further, al
though a T and n* value associated with a specific 
Rydberg MO lack meaning at large R values, an 
ionization energy can be defined at every R value. At 
intermediate R values, ionization involves a consider
able internal rearrangement of structure which leaves 
the positive ion the same as if an electron had merely 
been removed from a nonbonding Rydberg MO, 
while as R -*• » , the ionization energy becomes equal to 
the T for the excited atom in an LCAS function; these 
relations correspond to the pseudo-correlation of 
section 4. 

unpromoted Rydberg MO's (l<rg
2l<ru2s and l«-g

2l<7-u2pir). There seems 
to be no theoretical reason for such correlations for the repulsive single 
LCAS * ' s , and the explanation given in the text appears much more 
satisfactory. 

simple molecules, they are often sufficient for immedi
ate structural assignments, but as the molecular com
plexity increases, it often becomes necessary to use 
geometrical models from which theoretical moments 
are calculated in order to determine which particular 
configurations are consistent with the experimentally 
determined moments. 

A systematic approach to the calculation of theoretical 
moments from assumed models for several bicyclic 

(6) R. Riemschneider and W. Wucherpfennig, Z. Naturforsch., 
17b, 725 (1962). 

(7) D. D. Tanner and T. S. Gilman, / . Am. Chem. Soc, 85, 2892 
(1963). 

Electric Moments and Internuclear Distances in 
Molecules Containing Both Fixed and Rotating Polar Groups 

Theodore S. Gilman 

Contribution from the Department of Chemistry, University of Colorado, 
Boulder, Colorado. Received July 6,1965 

Abstract: Equations are derived which give the components of a rotating vector in terms of the components of its 
axis of rotation, the angle between the axis and the rotating vector, and the angle of rotation. It is shown how these 
equations can be used to calculate the electric moments of molecules with rigid frameworks to which fixed and/or 
rotating polar groups are attached, for which the skeletal coordinates and angles are known or can be inferred, and 
in which either free rotation or certain conformations of a rotatable group are assumed. An expression is derived 
for the calculation of the distance between an atom in a rotatable group and some vicinal fixed atom. Examples of 
the use of the various expressions derived are given. It is concluded that dipole moment data may be helpful in 
providing evidence for the absence, but not for the presence, of free rotation in the types of molecules for which the 
relationships given are applicable. 
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